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Abstract
Learning rewards from human behavior or feed-
back is a promising approach to aligning AI sys-
tems with human values but fails to consistently
extract correct reward functions. Interpretabil-
ity tools could enable users to understand and
evaluate possible flaws in learned reward func-
tions. We propose Counterfactual Trajectory Ex-
planations (CTEs) to interpret reward functions in
Reinforcement Learning by contrasting an orig-
inal and a counterfactual trajectory and the re-
wards they each receive. We derive six quality
criteria for CTEs and propose a novel Monte-
Carlo-based algorithm for generating CTEs that
optimizes these quality criteria. To evaluate how
informative the generated explanations are to a
proxy-human model, we train it to predict rewards
from CTEs. CTEs are demonstrably informative
for the proxy-human model, increasing the simi-
larity between its predictions and the reward func-
tion on unseen trajectories. Further, it learns to
accurately judge differences in rewards between
trajectories and generalizes to out-of-distribution
examples. Although CTEs do not lead to a per-
fect prediction of the reward, our method, and
more generally the adaptation of XAI methods,
are presented as a fruitful approach for interpret-
ing learned reward functions and thus enabling
users to evaluate them.

1. Introduction
As Reinforcement Learning (RL) models grow in their ca-
pabilities and adoption in real-world applications (Yu et al.,
2021; Kiran et al., 2022; Afsar et al., 2022), we must ensure
that they are safe and aligned with human values. A core
difficulty of achieving trustworthy and controllable AI (Cav-
alcante Siebert et al., 2023; Russell, 2019) is to accurately
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capture human intentions and preferences in the reward
function on which the RL agent is trained since the reward
function will shape the agent’s objectives and behaviour.
For many tasks, it is hard to manually specify a reward func-
tion that accurately represents the intentions, preferences,
or values of designers, users or society at large (Pan et al.,
2022; Amodei et al., 2016). Reward Learning is a set of
techniques that circumvents this problem by instead learning
the reward function from data. For example, Preference-
based RL (Christiano et al., 2017) derives a reward function
from preference judgments queried from a human and has
recently been applied to control the behaviour of Large Lan-
guage Models (Bai et al., 2022). Similarly, Inverse RL (Ng
& Russell, 2000), which is commonly used in autonomous
driving and robotics, aims to retrieve the reward function of
an expert from the demonstrations they generate. Reward
learning is a promising approach for aligning the reward
functions of AI systems with the intentions of humans (Rus-
sell, 2019; Leike et al., 2018). It has significant advantages
over behavioral cloning, which learns a policy by using
supervised learning on observation-action pairs since re-
ward functions are considered the most succinct, robust, and
transferable definition of a task (Abbeel & Ng, 2004). How-
ever, these techniques suffer from a multitude of theoretical
(Armstrong & Mindermann, 2018; Skalse & Abate, 2022)
and practical problems (Casper et al., 2023) that make them
unable to reliably learn human values which are diverse
(Lera-Leri et al., 2022), dynamic (van de Poel, 2022) and
context-dependent (Liscio et al., 2022).

We aim to develop interpretability tools that help humans to
understand learned reward functions so that they can detect
misalignments with their own values. This is in line with the
“Transparent Value Alignment” framework in which Sanne-
man and Shah (Sanneman & Shah, 2023) suggest leveraging
techniques from eXplainable AI (XAI) to provide explana-
tions about the reward function. The process of explaining
reward functions can be useful for both the understanding
and explaining phases of the XAI pipeline (Dwivedi et al.,
2023), by enabling both developers and users to inspect
reward functions. This is a relevant task for the XAI com-
munity, as it contributes to the goal of enabling human users
to understand, appropriately trust, and produce more ex-
plainable models (Dwivedi et al., 2023; Sanneman & Shah,
2023). However, there have been few attempts to interpret
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original

counterfactual

Reward(counterfactual) = +2
Reward(original) = +4

Figure 1. A car has originally taken a straight line and received
a reward of +4 from the reward function. By providing a coun-
terfactual that receives a lower reward of +2 the user can make
hypotheses about how the reward function assigns rewards.

reward functions and only Michaud et al. (Michaud et al.,
2020) attempt this for deep, learned reward functions. Our
work makes a novel connection between XAI and reward
learning by providing, to the best of our knowledge, the
first principled application of counterfactual explanations to
reward functions.

Counterfactual explanations are a popular XAI tool that has
not yet, to the best of our knowledge, been applied to ex-
plain reward functions. It helps humans to understand the
predictions of ML models by posing hypothetical “what-
if” scenarios. Humans commonly use counterfactuals for
decision-making, learning from past experiences, and emo-
tional regulation(Byrne, 2016; Kahneman & Miller, 1986;
Roese & Olson, 2014). Thus users can intuitively reason
about and learn from counterfactual explanations, which
makes this an effective and user-friendly mode of explana-
tion (Mittelstadt et al., 2019; Wachter et al., 2018; Mandel,
2011).

We propose Counterfactual Trajectory Explanations
(CTEs) that serve as informative explanations about
deep reward functions. CTEs can be employed in a se-
quential decision-making setting by contrasting an original
with a counterfactual partial trajectory along with the re-
wards assigned to them. This enables the user to draw
inferences about what behaviours cause the reward func-
tion to assign high or low rewards. For instance, consider
the domain of autonomous driving illustrated in Figure 1.
While a given driving trajectory by itself might not provide
much insight, adding a counterfactual trajectory along with
its reward allows a user to hypothesise that the reward func-
tion negatively rewards the driving agent for swerving and
getting close to the other lane.

In order to generate CTEs we identify and adapt six qual-
ity criteria for counterfactual explanations from XAI and
psychology and introduce two algorithms for generating
CTEs that optimise for these quality criteria. To evaluate
how effective the generated CTEs are we introduce a novel
measure of informativeness in which a proxy-human model
learns from the provided explanations. Implementation de-
tails, ablations and further experiments can be found in the

technical appendix. 1

2. Counterfactual Trajectory Explanations
(CTEs)

This study focuses on adapting counterfactual explanations
to interpret a learned reward function. Counterfactual expla-
nations alter the inputs to a given system, which causes a
change in the outputs (Wachter et al., 2018). When explain-
ing reward functions the inputs could either be single states
or (partial) trajectories. Correspondingly, the outputs to be
targeted can either be seen as rewards assigned to single
states or as the average reward assigned to the states in a
(partial) trajectory. If we would only alter individual states,
multi-step plans could be overlooked and infeasible counter-
factuals that cannot occur through any sequence of actions
might be created. By generating trajectories and showing
their average rewards we can provide the user with insights
about which multi-step behaviours are incentivized by the re-
ward function, while also guaranteeing that counterfactuals
are feasible. While it would be possible to generate multi-
ple counterfactuals per original, we only show the user one
counterfactual to be able to cover more original trajectories.

We operate in Markov Decision Processes consisting of
states S, actions A, transition probabilities P and a reward
function R. Further, we denote a learned reward function
as Rθ : S × A ⇒ R, a policy trained for Rθ as πθ, full
trajectories generated by a full play-through of the environ-
ment as τ and partial trajectories as t ⊆ τ . Counterfactual
Trajectory Explanations (CTEs) can now be defined as:

Definition 2.1. CTEs {(torg, rorg), (tcf , rcf )} consist of
an original and counterfactual partial trajectory and their
average rewards assigned by a reward function Rθ. Both
start in the state sn but then follow a different sequence of
actions resulting in different average rewards.

The difference in rewards can be causally explained by
the difference in actions. If the agent had chosen actions
(acfn , ..., acfk) instead of (aorgn , ..., aorgm) resulting in tcf
instead of torg the reward function Rθ would have assigned
an average reward rcf instead of rorg.2

We propose a method to address the following problem:
Given a learned reward function Rθ, a policy πθ trained
on Rθ and a full original trajectory τorg generated by πθ,
the task is to select a part of that trajectory torg ⊆ τorg and
generate a counterfactual tcf to it that starts in the same state
sn so that the resulting CTE is informative for an explainee

1The full code for the project is available at:
https://github.com/janweh/Counterfactual-Trajectory-
Explanations-for-Learned-Reward-Functions

2Examples of CTEs in the Emergency Environment (Peschl
et al., 2022) can be found in: https://drive.google.com/drive/folders
/1JMjwQM24BbDwL8vRnG3pST5hlvpzRfZM?usp=sharing

2
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to understand Rθ.

3. Method
This Section presents the method used to generate CTEs.
First, quality criteria that measure the quality of an expla-
nation are derived from the literature and combined into a
scalar quality value. Then two algorithms are introduced
which generate CTEs by optimising for the quality value.

3.1. Determining the quality of CTEs

Counterfactual explanations are usually generated by opti-
mising them for a loss function that determines how good
a counterfactual is (Artelt & Hammer, 2019). This loss
function combines multiple aspects, which we call “quality
criteria”.

3.1.1. QUALITY CRITERIA

By reviewing XAI literature we were able to identify 9
quality criteria that are used for counterfactual explanations.
These criteria are designed to make counterfactuals more
informative to a human. Out of these Causality, Resource
and Actionability (Keane et al., 2021; Verma et al., 2018;
Gajcin & Dusparic, 2022) are automatically achieved by our
methods. We are left with six quality criteria to optimise for
which we adapt to judge the quality of CTEs.

1. Validity: Counterfactuals should lead to the desired differ-
ence in the output of the model (Verma et al., 2018; Gajcin
& Dusparic, 2022). This difference in outputs makes it pos-
sible to causally reason about the changes in the inputs. We
maximise Validity as |Rθ(torg)−Rθ(tcf )|.

2. Proximity: The counterfactual should be similar to the
original (Keane et al., 2021; Miller, 2019; Gajcin & Dus-
paric, 2022). Thus we minimize a measure based on the
Modified Hausdorff distance (Dubuisson & Jain, 1994) that
finds the closest match between the state-actions pairs in the
two trajectories. The distance of state-action pairs is calcu-
lated as a weighted sum of the Manhattan distance of the
player positions, whether the same action was taken and the
edit distance between non-player objects in the environment.

3. Diversity: Explanations should cover the space of possi-
ble variables as well as possible (Huang et al., 2019; Frost
et al., 2022). Consequently, each new CTE should establish
novel information rather than repeating previously shown
CTEs. Thus we maximize Diversity of a new CTE compared
to previous CTEs. This is calculated as the sum of the aver-
age difference between the new length of the trajectory and
previous lengths, the average difference in the new starting
time in the environment and previous starting times, and the
fraction of previous trajectories that are of the same coun-
terfactual direction. Counterfactual direction can be upward

or downward comparisons (Roese, 1994) when the reward
of the counterfactual is higher or lower than the original’s
reward.

4. State importance: Counterfactual explanations should
focus on important states that have a significant impact on
the trajectory outcome (Frost et al., 2022). We aim to start
counterfactual trajectories in critical states, where the policy
strongly favors some actions over others. We maximize
the importance of a starting state which is calculated as
the policies negative entropy −

∑
a∈A π(a|s0) log π(a|s0)

(Frost et al., 2022; Huang et al., 2018).

5. Realisticness: The constellation of variables in a coun-
terfactual should be likely to happen (Keane et al., 2021;
Gajcin & Dusparic, 2022; Verma et al., 2018). In our set-
ting, we want counterfactual trajectories that are likely to be
generated by a policy trained on the given reward function.
Such a trajectory would likely score high on the reward
function. Thus we maximize: Rθ(tcf )−Rθ(torg).

6. Sparsity: Counterfactuals should only change a few
features compared to the original to make it cognitively
easier for a human to process the differences (Keane et al.,
2021; Verma et al., 2018; Gajcin & Dusparic, 2022; Miller,
2019). Instead of meticulously restricting the number of
features that differ between states we lighten the cogni-
tive load by incentivizing CTEs to be short by minimizing:
len(torg) + len(tcf ).

3.1.2. COMBINING QUALITY CRITERIA INTO A SCALAR
QUALITY VALUE

After measuring the six quality criteria, we scalarise them
into one quality value ρ to be assigned to a CTE. This is
done by normalising the criteria and combining them into a
weighted sum. Criteria are normalised to [0, 1] by iteratively
generating new CTEs with random weights and adapting
the minimum and maximum value the criteria take on.

The weights ω assigned to the quality criteria correspond
to their relative importance. However, this opens the ques-
tion of how one should weigh the different quality criteria
to generate the most informative explanations for a cer-
tain user. To find the optimal set of weights we suggest
a calibration phase in which N different sets of weights
ω = {ωV alidityj

, ..., ωSparsityj
}Nj=1 are uniformly sam-

pled ωi ∼ U(0, 1) and used to create CTEs. The CTE’s
informativeness is tested and the set of weights that produces
the most informative CTEs to a specific user are chosen for
further use.

3.2. Generation algorithms for CTEs

In order to generate CTEs we propose two algorithms that
optimise for the aforementioned quality value (see Section
3.1) along with a random baseline algorithm.
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Algorithm 1 Monte Carlo Trajectory Optimization

Input: full trajectory τorg, environment env, actions A
candidates = [] % store candidate CTEs
for sn in τorg do
Q = [] % Q-values of trajectories
tcf = [sn]
repeat

for i to niterations do
tscf ← SELECTION(tcf )
tecf ← EXPANSION(tscf )
ρ← SIMULATION(tecf )
Q← BACK-PROPAGATION(Q, ρ)

end for
a∗ = argmaxa∈A(Q(tcf , a))
sn ← env.step(sn, a∗)
APPEND(tcf , (sn, a∗))

until sn is terminal
torg = SUBSET(τorg, sn, |tcf |) % Subtrajectory from

% sn with same lengths as tcf
APPEND(candidates, (torg, tcf ))

end for
Return: argmaxc∈candidatesρ(c)

Algorithm 1 - Monte Carlo-based Trajectory Optimiza-
tion (MCTO):
MCTO adapts Monte Carlo Tree Search (MCTS) to the task
of generating CTEs. MCTS is a heuristic search algorithm
that has been applied to RL by modelling the problem as a
game tree, where states and actions are nodes and branches
(Silver et al., 2016; Vodopivec et al., 2017). It uses ran-
dom sampling and simulations to balance exploration and
exploitation in estimating the Q-values of states and actions.

In contrast to MCTS, MCTO operates on partial trajecto-
ries instead of states, optimises for quality values instead
of rewards from the environment, adds a termination ac-
tion which ends the trajectory and applies domain-specific
heuristics. Pseudocode 1 showcases the algorithm.

In MCTO nodes represent partial trajectories t, branches are
actions a and child nodes result from parents by following
the action in the connecting branch. Leaf nodes are termi-
nated trajectories which can occur from entering a terminal
state in the environments or by selecting an additional termi-
nal action that is always available. MCTO optimises for the
quality value ρ of a CTE, which is being measured at the
leaf nodes. A CTE is derived by taking the partial trajectory
in the leaf node as the counterfactual tcf and the subtrajec-
tory of τorg from starting state sn with the same length as
tcf as the original torg.

Each state sn ∈ τorg in the original trajectory is used as a
potential starting point of the CTE by setting it as the root
of the tree and running MCTO. Out of these, the CTE with

the highest quality value is chosen. For a given state we
choose the next action by repeating these four steps for a set
number of times (niterations) before choosing the action a∗

with the highest Q-value:

1. SELECTION: A node in the tree, which still has unex-
plored branches is chosen. The choice is made accord-
ing to the Upper Confidence Bounds for Trees algo-
rithm based on the estimated Q-value of the branches
and the number of times the nodes and branches have
already been visited.

2. EXPANSION: After selecting a node, we choose a
branch and create the resulting child node.

3. SIMULATION: One full playout is completed by sam-
pling actions uniformly until the environment termi-
nates the trajectory or the terminating action is chosen.
At each step, the terminal action is chosen with a prob-
ability of pMCTO(end). The resulting CTE’s quality
value ρ is evaluated according to the quality criteria.

4. BACK-PROPAGATION: ρ is back-propagated up the
tree to adjust the Q-values of previous nodes t: Q(t) =

1
N(t) (ρ−Q(t)).

As an efficiency-increasing heuristic, we prune off branches
of actions that have a likelihood πθ(a|s) ≤ thresholda to
be chosen by the policy. Furthermore, we choose not to
employ a discount factor (γ = 1) when back-propagating ρ,
since this would incentivize shorter CTEs while this is al-
ready done by the Sparsity criterion. Ablations showed that
other heuristics such as choosing actions in the simulation
based on the policy πθ or basing the decisions for expansion
on an early estimate of the ρ did not improve performance.

Algorithm 2 - Deviate and Continue (DaC):
The Deviate and Continue (DaC) algorithm creates a coun-
terfactual trajectory tcf by deviating from the original trajec-
tory τorg before continuing by choosing actions according
to policy πθ. Starting in a state sn ∈ τorg, the deviation is
performed by sampling an action from the policy πθ that
leads to a different state than in the original trajectory. After
ndeviations such deviations tcf is continued by following πθ.
During the continuation, there is a pDaC(end) chance per
step of ending both torg and tcf . This process is repeated
for every state sn ∈ τorg and the resulting CTE with the
highest quality value is chosen.

Baseline Algorithm - Random As a weak baseline, we
compare our algorithms to randomly generated CTEs. A
start state sn of the counterfactual is uniformly chosen from
the original trajectory τorg. From there actions are uni-
formly sampled, while the trajectories have a pRandom(end)
chance of being ended in each timestep.

4
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Figure 2. Schematic that describes how rewards are learned (1),
explanations are generated (2) and evaluated (3,4&5).

4. Evaluation
This Section details the experimental approach we take to
evaluate the informativeness of CTEs. We want to auto-
matically measure how well an explainee can understand
a reward function from explanations, while similar works
perform user studies or do not offer quantitative evaluations.
Since previous methods for interpreting reward functions
are not applicable to our evaluation setup we can only com-
pare our proposed methods with a baseline and criteria with
each other. Our evaluation approach includes learning a
reward function, generating CTEs about it and measuring
how informative the CTEs are for a proxy-human model
(see Figure 2).

4.1. Generating reward functions and CTEs

To learn a reward function (1) we first generate expert
demonstrations. A policy π∗ is trained on a ground-truth
reward R∗ via Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). This policy is used to generate 1000
expert trajectories τexp = {τexpk

}1000k=1 . Secondly, we use
Adversarial IRL (Fu et al., 2017) which derives a robust
reward function Rθ and policy πθ from the demonstrations
by posing the IRL problem as a two-player adversarial game
between a reward function and a policy optimizer.

We use the Emergency environment (Peschl et al., 2022), a
Gridworld environment that represents a burning building
where a player needs to rescue humans and reduce the fire.
The environment 7 humans that need to be rescued, a fire
extinguisher which can lessen the fire and obstacles which
block the agent from walking through. In each timestep,
the player can walk or interact in one of the four directions.
This environment is computationally cheap and simple to
investigate. However, it is still interesting to study since
the random initialisations require the reward function to
generalise while taking into account multiple sources of
reward.

To make CTEs about Rθ (2) we first generate a set of full
trajectories τorg = {τorgk}1000k=1 using the policy πθ. Lastly,
we use the algorithms described in Section 3.2 to optimise
for the quality criteria in Section 3.1 to produce one CTE per
full trajectory CTEs = {torgk , tcfk}1000k . We conducted a
grid search of hyperparameters for each of the generation
algorithms. Based on that we choose pMCTO(end) = 0.35,
thresholda = 0.003 and niterations = 10 for MCTO,
pDaC(end) = 0.55 and ndeviaitons = 3 for DaC and
pRandom(end) = 0.15 for Random.

4.2. Evaluating the informativeness of CTEs

We argue that informative explanations allow the explainee
to better understand the learned reward function, which we
formalize as the explainee’s ability to assign similar average
rewards to unseen trajectories as the reward function.

To evaluate the informativeness of CTEs, we employ a Neu-
ral Network (NN) as a proxy-human model to learn from
the explanations and to predict the average reward assigned
by Rθ for a trajectory. While humans learn differently from
data than an NN, this evaluation setup still gives us im-
portant insights into the functioning and effectiveness of
CTEs.

Notably, this measure only serves to evaluate the generation
method and would not be used when showing CTEs to
humans. It allows us to test whether extracting generalisable
knowledge about the reward function from the provided
CTE is possible by measuring how well the proxy-human
model can predict unseen CTEs. Furthermore, it allows
us to compare different algorithms and quality criteria by
measuring and contrasting the informativeness of CTEs they
generate.

The evaluation procedure consists of three steps, as pre-
sented in Figure 2: (3) features and labels are extracted from
the CTEs to form a dataset to train on, (4) a proxy-human
model is trained to predict the rewards of trajectories from
these features, and, lastly, (5) the similarity between the
predictions of the proxy-human model and the rewards as-
signed by Rθ is measured to indicate how informative the
CTEs were to the model.

Extracting features and labels (3)
We extract 46 handcrafted features F (t) = {f0, ..., f45}
about the partial trajectories. These features represent con-
cepts that the reward function might consider in its decision-
making, for example of the form “time spent using item X”
or “average distance from object Y”. We opted against meth-
ods for automatic feature (?) extraction to avoid introducing
more moving parts in the evaluation. The average reward
for the states in a partial trajectory serves as the label for the
proxy-human model r = 1

|t|Σs∈tRθ(s). By averaging the
reward we avoid biasing the learning to the length of partial

5
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trajectories.

Learning a proxy-human model (4)
A proxy-human regression model Mϕ is trained to predict
the average reward r given to the partial trajectory t by Rθ

from the extracted features F (t). Humans learn from coun-
terfactual explanations in a contrastive manner by looking
at the difference in outputs to causally reason about the
effect of the inputs (Miller, 2019) but also learn from the
individual data points. Since we aim to make Mϕ learn
in a similar way to a human we train Mϕ on two tasks.
In the single task, it is trained to separately predict the
average reward for the original and the counterfactual. Giv-
ing rewards to unseen trajectories shows how similar the
judgements of Mϕ and Rθ are for trajectories. The loss
on one CTE for this task is the sum: Lsingle(torg, tcf ) =
(Mϕ(torg)−Rθ(torg))

2 + (Mϕ(tcf )−Rθ(tcf ))
2.

In the contrastive task, Mϕ is trained to predict the differ-
ence between the average original and counterfactual reward.
By doing this we train Mϕ to reason about how the differ-
ence in inputs causes the outputs instead of only learning
from data points independently: Lcontrastive(torg, tcf ) =
[(Mϕ(torg)− (Mϕ(tcf ))− (Rθ(torg)−Rθ(tcf )]

2.

Mϕ is defined as a 4-layer NN that receives the features
extracted from both the original and the counterfactual as a
concatenated input and is trained in a multi-task fashion on
single and contrastive tasks. The body of the NN is shared
between both tasks and feeds into two separate last layers
that perform the two tasks separately. The losses of both
tasks are used separately to update their respective last layer
and are added into a weighted sum to update the shared
body of the network.

We train the NN on 800 samples with the Adam optimiser
and weight decay and results are averaged over 30 random
initialisations. We perform hyperparameter tuning using
5-fold cross-validation for the learning rate, regularisation
values, number of training epochs and dimensionality of
hidden layers.

Measuring similarity to the reward function (5)
To measure how similar the proxy-human model’s predic-
tions are to the reward function’s outputs we measure the
Pearson Correlation between them on unseen CTEs. Re-
ward functions are invariant under multiplication of positive
numbers and addition (NG, 1999). This is well captured by
the Pearson Correlation because it is insensitive to constant
additions or multiplications. To ensure a fair comparison
between different settings we test how well a model trained
on CTEs from one setting generalises to a combined test set
that contains CTEs from all settings.
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Figure 3. The average informativeness of CTEs generated by
MCTO, DaC and Random for a NN trained for single and con-
trastive predictions, along with median, upper and lower quartile.

5. Experiments
This Section describes the results of three experiments that
test the overall informativeness of CTEs, compare the gen-
eration algorithms and evaluate the quality criteria.

5.1. Experiment 1: Informativeness of Explanations for
proxy-human model

Experimental Setup: We want to determine the success
of our methods in generating informative explanations for a
proxy-human model Mϕ, while also comparing the gener-
ation algorithms on the downstream task. As described in
Section 4.2 each generation algorithm produced 800 CTEs
on which we trained 10 Mϕs each, before testing the Pear-
son Correlation between their predictions and the average
rewards on a combined test set of 600 CTEs. We use the
weights from Table 2 for the quality criteria.

Results: Figure 3 shows that Mϕs trained on CTEs from
MCTO achieved on average higher correlation values. Mϕs
trained on DaC’s CTEs were significantly (p < 0.001)
worse, while the models trained on randomly generated
CTEs achieved a much lower correlation on both tasks.

5.2. Experiment 2: Quality of Generation Algorithms

Experimental Setup: This experiment tests how good
the generation algorithms are at optimising for the quality
value. Each generation algorithm produced 1000 CTEs
and their quality value ρ was measured. To make this
test independent of the weights for quality criteria, each
CTE is optimised for a different uniformly sampled set
of weights: ω = {ωV alidityj

, ..., ωsparsityj
}1000j=1 , where

ωi ∼ U(0, 1). Furthermore, the efficiency of algorithms
(seconds/generated CTE) and the length and starting time

6
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MCTO DaC Random
Avg quality value ρ ↑ 1.44 1.32 1.1
Std quality value ρ 0.47 0.49 0.37
Efficiency (s/CTE) ↓ 3 14.86 5.46 0.04
Length (# steps) 2.76 4.96 7.41
Starting Points (# first step) 20.96 20.45 42.58

Table 1. Shows the average quality value ρ and its variance
achieved by MCTO, DaC and Random, along with the efficiency
of generating CTEs, the length of the CTEs and at what step in the
environment they started.

Validity Proximity Diversity State Importance Realisticness Sparsity
0.982 0.98 0.576 0.528 0.303 0.851

Table 2. Most informative set of weights for MCTO and DaC.

of CTEs were recorded.

Results: From Table 1 we see that MCTO achieved a
higher average quality value than DaC, which again outper-
formed the random baseline (differences are significant with
p < 1e−7). However, the higher performance came at a
computational cost, since MCTO was slower, while Random
was very efficient. On average the trajectories of Random
were the longest and those of MCTO the shortest. Lastly,
both MCTO and DaC tended to choose starting times earlier
in the environment (20.96 and 20.45 out of 75 timesteps).

5.3. Experiment 3: Informativeness of quality criteria

Experimental Setup: Finally, we wanted to determine the
influence of a quality criterion on informativeness. For this,
we analyzed the Spearman correlation between the weight
assigned to the criterion during the generation of a set of
CTEs and the informativeness of this set of CTEs. Simulta-
neously we carried out the calibration phase to determine
the set of weights which leads to the most informative CTEs
for an explainee and generation algorithm.

Thirty sets of weights ω were each used to generate one
set of 1000 CTEs with MCTO. 800 CTEs were used to train
10 Mϕs as described in Section 4.2. The performances of
the resulting 30 sets of Mϕs were evaluated on a test set
that combines the remaining 200 samples from each of the
30 sets of CTEs. This indicates the informativeness of the
CTEs they were trained on. By measuring the Spearman cor-
relation between the weights assigned to a criterion and the
informativeness of the resulting CTEs for Mϕ, we can infer
the importance of that criterion for making CTEs informa-
tive. Furthermore, we record the set of weights which leads
to the most informative CTEs for each generation algorithm
except Random which is independent of weights.

Results: Figure 4 shows that for both contrastive and

3Efficiency differs depending on the hardware used.

0.0 0.2 0.4 0.6 0.8
Correlation with informativeness

Sparsity

Realisticness

State 
Importance

Diversity

Proximity

Validity contrastive
single

Figure 4. Spearman correlation between weights for the quality
criteria and the informativeness of the resulting CTEs for Mϕ for
the contrastive and single task. Averaged over 10 models along
with the median and upper and lower quartile.

single learning, the weights of Validity (ωV alidity) corre-
lated the strongest with the informativeness for Mϕ. This
is followed by ωRealisticness, ωProximity, ωDiversity and
ωStateImportance which all show a moderate correlation
with the informativeness, while ωSparsity was barely or
even negatively correlated with informativeness. While
there are differences between the importance of criteria for
the two tasks, they end up with similar results.

Furthermore, we find that the same set of weights leads
to the most informative CTEs for both MCTO and DaC. It
assigns very high weights to Validity and Proximity, while
Realisticness is weighted low. Contrary to Figure 4 Sparsity
is highly weighted.

5.4. Discussion

CTEs are informative for the proxy-human model. Ex-
periment 1 shows that an NN-based model trained on CTEs
is much better than random guessing at predicting rewards
or judging the difference in rewards between unseen CTEs.
It also shows a capability to generalise to out-of-distribution
examples when predicting CTEs generated by other algo-
rithms. This indicates that CTEs enable an explainee to learn
some aspects of the reward function which hold generally
across different distributions of trajectories.

However, the fact that the correlations of Mϕ’s predictions
with the true labels are ≤ 0.60 clearly shows that there are
aspects of the reward function, which Mϕ did not pick up on.
This could be explained by a lack of training samples, a loss
of information during the feature extraction or insufficient
coverage of different situations in the environment. Further-
more, the studied reward function is noisy, often outputting
different rewards for apparently similar situations and is
thus hard to understand.
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MCTO generated the most informative CTEs, while the
CTEs from Random were less informative.

Similarly, we find that MCTO is the most effective gener-
ation algorithm for optimising the quality value, while
DaC outperforms Random. The fact that the algorithms
which achieved higher quality values in Experiment 2 also
produced more informative CTEs in Experiment 1 indicates
that optimising well for the quality value is generally use-
ful for making more informative CTEs. Table 1 shows a
trade-off, between the performance and efficiency of the
generation algorithms, which likely appears because a more
exhaustive search finds higher-scoring CTEs. Furthermore,
MCTO and DaC selected CTEs with earlier starting times.
This is because the environment had higher fluctuations
in rewards early on, which benefits Validity and State im-
portance. This shows that they are able to select CTEs in
more interesting parts of the environment. They also tend to
choose shorter trajectories, which score higher on Sparsity.

Among the criteria Validity is the most important criterion
for generating informative CTEs as shown in Experiment
3. High weights for Validity lead to higher differences in
rewards and lead to a larger range of labels for contrastive
predictions. Possibly, an NN can learn more information
from these larger differences and is thus better informed
by CTEs that are high in Validity. Proximity, Realisticness,
Diversity and State importance are also beneficial for hav-
ing the proxy-human model learn from CTEs, but we are
less certain about why they are beneficial. Although pri-
oritising Sparsity does not correlate with informativeness,
the most informative set of weights does give it a high
weight. However, this high weight might be a fluke since
we only tried 30 sets of weights. In any case, we should
not conclude that humans would not benefit from sparse
explanations. While NNs can easily compute gradients over
many different features simultaneously, humans can only
draw inferences about a few features at once (Miller, 1956).
This clarifies that the prioritisation of quality criteria will
likely differ for a human.

The fact that the two tasks largely agreed on the importance
of quality criteria indicates that they complement each other.
This might be because the two tasks are similar and thus
benefit from developing similar representations in the shared
body of the network. Furthermore, because the same set
of weights out of 30 options led to the most informative
CTEs when using MCTO and DaC we can speculate that the
relative importance of quality criteria for an explained is
similar, independent of the generation algorithm used.

Limitations: Since we do not measure the informativeness
of CTEs for a human user, our experiments do not prove
that CTEs are informative for humans or show how impor-
tant the criteria would be to a user. Furthermore, we only
conduct experiments on a single learned reward function in

a single environment, making it unclear how our findings
will generalise to other settings. The method might espe-
cially struggle with large and complex environments where
it is difficult to achieve high coverage of the environment
with CTEs. Further, depends on the ability to reset the en-
vironment to previous states, which is not given in some
environments. Lastly, our evaluation measure depends on
hand-crafted features which limits its applicability.

6. Related Work
This Section covers previous work on the interpretability of
reward functions and counterfactual explanations for AI.

6.1. Interpretability of Learned Reward Functions

Reward functions can be made intrinsically more inter-
pretable by learning them as decision trees (Bewley &
Lecue, 2022; Kalra & Brown, 2022; Srinivasan & Doshi-
Velez, 2020) or in logical domains (Kasenberg & Scheutz,
2017; Munzer et al., 2015). Attempts have been made to
make deep reward functions more interpretable by simpli-
fying them through equivalence transformation (Jenner &
Gleave, 2022) or by imitating a Neural Network with a
decision tree (Russell & Santos, 2019). However, such
interpretable representations can negatively impact the per-
formance of the method.

To avoid this drawback, we interpret learned reward func-
tions via post-hoc explanations. Post-hoc methods are ap-
plied after the model has been trained to explain the model’s
decision-making process. Lindsey and Shah (Sanneman &
Shah, 2021; 2022) test the effectiveness and required cogni-
tive workload of simple explanation techniques about linear
reward functions. While their work requires linear reward
functions our method is applicable to any representation of
a reward function.

The closest work to ours comes from Michaud et al.
(Michaud et al., 2020) who apply gradient salience and oc-
clusion maps to identify flaws in a learned reward function
and employ handcrafted counterfactual inputs to validate
their findings. Our work focuses on counterfactuals and
automatically generates them to be of high quality.

6.2. Counterfactual Explanations

Despite a large body of work on generating counterfactual
explanations about ML models in supervised learning prob-
lems (Verma et al., 2020; Artelt & Hammer, 2019; Guidotti,
2022; Stepin et al., 2021) and their relation to human psy-
chology (Keane et al., 2021; Byrne, 2019), this approach has
only recently been adapted to explain RL policies. Counter-
factuals consist of a change in certain input variables which
cause a change in outputs (Wachter et al., 2018). In the
RL setting, counterfactual explanations can be changes in
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Features, Goals, Objectives, Events, or Expectations that
cause the agent to change its pursued Actions, Plans, or
Policies (Gajcin & Dusparic, 2022). This can improve users’
understanding of out-of-distribution behaviour (Frost et al.,
2022), provide them with more informative demonstrations
(Lee et al., 2022) or showcase how an agent’s environmen-
tal beliefs influence its planning (Stein, 2021). Instead of
explaining a policy π this paper presents the first princi-
pled attempt to use them to use counterfactuals to explain a
reward function R.

7. Conclusion
While reward learning presents a promising approach for
aligning AI systems with human values, there is a lack of
methods to interpret the resulting reward functions. To
address this we formulate the notion of Counterfactual Tra-
jectory Explanations (CTEs) and propose algorithms to gen-
erate them. Our results show that CTEs are informative for
an explainee, but do not lead to a perfect understanding of
the reward function. Further, they validate our MCTO algo-
rithm to be effective at generating CTEs and imply that the
difference in outcomes between an original and counterfac-
tual trajectory is especially important to achieve informative
explanations. This research demonstrates that it is fruitful
to apply techniques from XAI to interpret learned reward
functions.

Future work should carry out a user study to test the infor-
mativeness of CTEs for humans. Furthermore, the method
should be evaluated in more complex environments and on
a range of reward functions produced by different reward
learning algorithms. Ultimately, we hope that CTEs will
be used in practice to allow users to understand the mis-
alignments between their values and a reward function, thus
enabling them to improve the reward function with new
demonstrations or feedback.
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man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Armstrong, S. and Mindermann, S. Occam’s razor is in-
sufficient to infer the preferences of irrational agents.
Advances in neural information processing systems, 31,
2018.

Artelt, A. and Hammer, B. On the computation of
counterfactual explanations – a survey. arXiv preprint
arXiv:1911.07749, 2019.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., et al.
Training a helpful and harmless assistant with reinforce-
ment learning from human feedback, 2022.

Bewley, T. and Lecue, F. Interpretable preference-based
reinforcement learning with tree-structured reward func-
tions. In Proceedings of the 21st International Confer-
ence on Autonomous Agents and Multiagent Systems, pp.
118–126, 2022.

Byrne, R. M. Counterfactual thought. Annual review of
psychology, 67:135–157, 2016.

Byrne, R. M. Counterfactuals in explainable artificial in-
telligence (xai): Evidence from human reasoning. In
Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, pp. 6276–6282, 2019.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer,
J., et al. Open problems and fundamental limitations of
reinforcement learning from human feedback, 2023.

Cavalcante Siebert, L., Lupetti, M. L., Aizenberg, E., Beck-
ers, N., Zgonnikov, A., et al. Meaningful human control:
actionable properties for ai system development. AI and
Ethics, 3(1):241–255, 2023.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Dubuisson, M.-P. and Jain, A. A modified hausdorff distance
for object matching. In Proceedings of 12th International
Conference on Pattern Recognition, volume 1, pp. 566–
568 vol.1, 1994.

9



Explaining Learned Reward Functions with Counterfactual Trajectories

Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R.,
Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G., et al.
Explainable ai (xai): Core ideas, techniques, and solu-
tions. ACM Computing Surveys, 55(9):1–33, 2023.

Frost, J., Watkins, O., Weiner, E., Abbeel, P., Darrell, T.,
Plummer, B., and Saenko, K. Explaining reinforce-
ment learning policies through counterfactual trajectories.
arXiv preprint arXiv:2201.12462, 2022.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248, 2017.

Gajcin, J. and Dusparic, I. Counterfactual explanations for
reinforcement learning. arXiv preprint arXiv:2210.11846,
2022.

Guidotti, R. Counterfactual explanations and how to find
them: literature review and benchmarking. Data Mining
and Knowledge Discovery, pp. 1–55, 2022.

Huang, S. H., Bhatia, K., Abbeel, P., and Dragan, A. D.
Establishing appropriate trust via critical states. In 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3929–3936, 2018.

Huang, S. H., Held, D., Abbeel, P., and Dragan, A. D.
Enabling robots to communicate their objectives. Au-
tonomous Robots, 43(2):309–326, 2019.

Jenner, E. and Gleave, A. Preprocessing reward functions
for interpretability. arXiv preprint arXiv:2203.13553,
2022.

Kahneman, D. and Miller, D. T. Norm theory: Comparing
reality to its alternatives. Psychological review, 93(2):
136, 1986.

Kalra, A. and Brown, D. S. Interpretable reward learning
via differentiable decision trees. In NeurIPS ML Safety
Workshop, 2022.

Kasenberg, D. and Scheutz, M. Interpretable apprenticeship
learning with temporal logic specifications. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC),
pp. 4914–4921. IEEE, 2017.

Keane, M. T., Kenny, E. M., Delaney, E., and Smyth, B. If
only we had better counterfactual explanations: Five key
deficits to rectify in the evaluation of counterfactual xai
techniques. Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI-21),
Survey Track, pp. 4466–4474, 2021.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.
A. A., et al. Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent
Transportation Systems, 23(6):4909–4926, 2022.

Lee, M. S., Admoni, H., and Simmons, R. Reasoning about
counterfactuals to improve human inverse reinforcement
learning. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 9140–9147,
2022.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. Scalable agent alignment via reward modeling:
a research direction. arXiv preprint arXiv:1811.07871,
2018.

Lera-Leri, R., Bistaffa, F., Serramia, M., Lopez-Sanchez,
M., and Rodriguez-Aguilar, J. Towards pluralistic
value alignment: Aggregating value systems through ℓp-
regression. In Proceedings of the 21st International Con-
ference on Autonomous Agents and Multiagent Systems,
pp. 780–788, 2022.

Liscio, E., van der Meer, M., Siebert, L. C., Jonker, C. M.,
and Murukannaiah, P. K. What values should an agent
align with? an empirical comparison of general and
context-specific values. Autonomous Agents and Multi-
Agent Systems, 36(1):23, 2022.

Mandel, D. R. Of causal and counterfactual explanation. In
Understanding counterfactuals, understanding causation:
Issues in philosophy and psychology, pp. 147. Oxford
University Press, 2011.

Michaud, E. J., Gleave, A., and Russell, S. Understanding
learned reward functions. Deep RL Workshop, NeurIPS
2020, 2020.

Miller, G. A. The magical number seven, plus or minus two:
Some limits on our capacity for processing information.
Psychological review, 63(2):81, 1956.

Miller, T. Explanation in artificial intelligence: Insights
from the social sciences. Artificial Intelligence, 267:1–38,
2019.

Mittelstadt, B., Russell, C., and Wachter, S. Explaining
explanations in ai. In Proceedings of the conference on
fairness, accountability, and transparency, pp. 279–288,
2019.

Munzer, T., Piot, B., Geist, M., Pietquin, O., and Lopes, M.
Inverse reinforcement learning in relational domains. In
International joint conferences on artificial intelligence,
2015.

NG, A. Y. Policy invariance under reward transformations :
Theory and application to reward shaping. Proc. of the
Sixteenth International Conference on Machine Learn-
ing, 1999. URL https://cir.nii.ac.jp/crid/
1570009750040818432.

10

https://cir.nii.ac.jp/crid/1570009750040818432
https://cir.nii.ac.jp/crid/1570009750040818432


Explaining Learned Reward Functions with Counterfactual Trajectories

Ng, A. Y. and Russell, S. J. Algorithms for inverse rein-
forcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, pp. 663–
670, 2000.

Pan, A., Bhatia, K., and Steinhardt, J. The effects of reward
misspecification: Mapping and mitigating misaligned
models. In International Conference on Learning Repre-
sentations, 2022.

Peschl, M., Zgonnikov, A., Oliehoek, F. A., and Siebert,
L. C. Moral: Aligning ai with human norms through
multi-objective reinforced active learning. In Pro-
ceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’22,
pp. 1038–1046, Richland, SC, 2022.

Roese, N. J. The functional basis of counterfactual thinking.
Journal of personality and Social Psychology, 66(5):805,
1994.

Roese, N. J. and Olson, J. M. What might have been: The
social psychology of counterfactual thinking. Psychology
Press, 2014.

Russell, J. and Santos, E. Explaining reward functions in
markov decision processes. In The Thirty-Second Inter-
national Flairs Conference, 2019.

Russell, S. Human compatible: Artificial intelligence and
the problem of control. Penguin, 2019.

Sanneman, L. and Shah, J. Explaining reward functions
to humans for better human-robot collaboration. arXiv
preprint arXiv:2110.04192, 2021.

Sanneman, L. and Shah, J. Transparent value alignment. In
Companion of the 2023 ACM/IEEE International Confer-
ence on Human-Robot Interaction, HRI ’23, pp. 557–560,
New York, NY, USA, 2023.

Sanneman, L. and Shah, J. A. An empirical study of reward
explanations with human-robot interaction applications.
IEEE Robotics and Automation Letters, 7(4):8956–8963,
2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Skalse, J. M. V. and Abate, A. Misspecification in inverse
reinforcement learning. In NeurIPS ML Safety Workshop,
2022.

Srinivasan, S. and Doshi-Velez, F. Interpretable batch irl to
extract clinician goals in icu hypotension management.
AMIA Summits on Translational Science Proceedings,
2020:636, 2020.

Stein, G. Generating high-quality explanations for naviga-
tion in partially-revealed environments. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 17493–17506, 2021.

Stepin, I., Alonso, J. M., Catala, A., and Pereira-Fariña, M.
A survey of contrastive and counterfactual explanation
generation methods for explainable artificial intelligence.
IEEE Access, 9:11974–12001, 2021.

van de Poel, I. Understanding value change. Prometheus,
38(1):7–24, 2022. URL https://www.jstor.org/
stable/48676463.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
In International Conference on Machine Learning, pp.
5045–5054. PMLR, 2018.

Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dick-
erson, J. P., and Shah, C. Counterfactual explanations and
algorithmic recourses for machine learning: A review.
arXiv preprint arXiv:2010.10596, 2020.

Vodopivec, T., Samothrakis, S., and Ster, B. On monte
carlo tree search and reinforcement learning. Journal of
Artificial Intelligence Research, 60:881–936, 2017.

Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual
explanations without opening the black box: Automated
decisions and the gdpr. Harvard Journal of Law & Tech-
nology, 31(2), 2018.

Yu, C., Liu, J., Nemati, S., and Yin, G. Reinforcement learn-
ing in healthcare: A survey. ACM Computing Surveys, 55
(1), 2021.

11

https://www.jstor.org/stable/48676463
https://www.jstor.org/stable/48676463


Explaining Learned Reward Functions with Counterfactual Trajectories

A. Environment
For our experiments, we employ the Emergency environment developed by Peschl et al. (2022) which is a Gridworld
environment that represents a burning building where a player needs to rescue humans and reduce the fire. The environment
contains a player, 7 humans that need to be rescued, a fire extinguisher which can lessen the fire and obstacles which block
the agent from walking through (see Figure 5). Humans can be rescued by standing next to them and interacting with their
cells. The fire extinguisher is placed in the bottom right and used by standing on its cell. At each step, the agent can either
move in one of the four directions, interact with an adjacent cell or stand still. In each run, the starting position of the player,
humans and obstacles are randomly initialised and the environment is run for 75 steps. A ground truth reward function R∗

assigns a reward of +10 per human saved and +1 per step the fire extinguisher is used.

We choose this environment since it is simple, but still requires generalisation and provides multiple sources of reward. The
fact that it is a deterministic, small Gridworld environment makes it computationally cheaper to train PPO and AIRL and
thus allows for faster iterations in the development cycle. Since the starting positions of the agent, humans and obstacles are
randomised the policy and reward function are required to have different initialisations. Lastly, providing multiple sources
of rewards means that the learned reward function needs to capture multiple aspects of the environment, which makes it
more interesting to provide explanations for it.

The environment is available at: https://github.com/mlpeschl/moral rl

Figure 5. A random initialisation of the Emergency environment by Peschl et al. (2022). Shows the player P in blue, the humans C in
green, the obstacles H in brown, the fire-extinguisher G in pink and the borders of the environment # in brown.

B. Additional implementation details
B.1. Implementation of quality criteria

In this appendix, we lay out the implementation of the quality criteria we use. For the motivation of the criteria see Section
3.1.1.

B.1.1. VALIDITY

We calculate the difference in rewards between torg and tcf as the absolute difference in average rewards: Validity as
|Rθ(torg)−Rθ(tcf )|, where Rθ(t) = 1

|t|Σs∈tRθ(s). The average reward attained is used to not bias the Validity with
regards to the differences in length between trajectories.

B.1.2. PROXIMITY

We interpret Proximity as the similarity between trajectories, which is measured using the Modified Hausdorff distance
(MHD) (Dubuisson & Jain, 1994). MHD is a technique to calculate the similarity between two sets of points and has been
used in previous works in IRL to evaluate whether generated trajectories are similar to each other. For two trajectories A
and B, it calculates how large the distance of each point in A is to its closest point in B and vice versa and then takes the
higher of those two values as the distance between the trajectories:

MHD(d(A,B), d(B,A)) = max(d(A,B), d(B,A)), where d(A,B) = 1
Na

∑
a∈A minb∈Bdist(a, b)
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The distance between state action pairs dist(a, b) takes into three factors:

• Manhattan distance between the player coordinates in a and b to measure how far the player is apart in these states
distplayer(a, b) = |xa − xb|+ |ya − yb|, where x and y denote the players x- and y-coordinates in the environment in
that state.

• Whether the action taken was the same distaction(a, b) =

{
0 if aaction = baction

1 otherwise
.

• The edit distance between humans disthumans(a, b) = ||ahumans − bhumans||, where ||.|| indicates the edit distance
operation and bhumans denotes the x- and y-coordinates of all humans in the environment.

These are then added into a weighted sum: dist(a, b) = 1.5 · distplayer(a, b) + 0.5 · distaction(a, b) + disthumans(a, b).
The weight between the factors was determined by trying out different weights and subjectively judging how the weighted
sum matched with the researcher’s judgment about the similarity between trajectories. Furthermore, the distance metric
is not environment-agnostic, since we draw on our knowledge about the specific environment to determine which factors
should go into the distance measurement of states.

B.1.3. DIVERSITY

We calculate Diversity as the sum of 4 aspects of trajectories: their length, starting time, starting state and whether they are
an upward or downward counterfactual. Diversity is calculated for each potential new CTE in relation to previous CTEs that
have already been shown to the user. So for the first CTE Diversity= 0 and for the 5th CTE, it is measured with regards to
the 4 previously generated CTEs.

To measure how similar the length of the counterfactual is to the lengths of previous counterfactuals we take the three
previous CTEs which are closest in length (smallest difference) and calculate their average difference in length to the new
CTE. In the same way, we compare the starting time of a CTE to the starting times of previous CTEs by comparing the 3
closest previous CTEs and calculating their average difference in starting times.

Further, counterfactuals can be divided into upward and downward counterfactuals, depending on whether the counterfactual
leads to a better (up) or worse (down) outcome than the original (Roese, 1994). To add more diversity we add a reward based
on how often the type of counterfactual has already been shown previously. If the currently considered CTE is an upward
CTE we reward it if few of the previous CTEs were upwards down

down+up and if it is downwards we do the opposite up
down+up .

Finally, these criteria are summed together to form one Diversity criterion.

B.1.4. STATE IMPORTANCE

States can be considered critical if the variance in the Q-function for the actions or the entropy in the policies distribution
over actions could serve as heuristics for interesting states. Amir and Amir (Amir & Amir, 2018) calculate the importance of
a state as the difference in Q-values between the best and the worst action: I(s) = maxaQ

π
(s,a)−minaQ

π
(s,a), while Huang

et al. (Huang et al., 2018) take the difference between the best and average action I(s) = maxaQ
π
(s,a) −

1
|A|

∑
a∈A Qπ

(s,a).
Both Forst et al (Frost et al., 2022) and Huang et al. (Huang et al., 2018) use the negative entropy in the probability
distribution over actions in that state State Importance(s) = −

∑
a∈A π(a|s) log π(a|s). Since our method does not produce

Q-values, we rely on the negative entropy version to measure how critical the starting state of a CTE is and select CTEs that
score high on this criterion.

B.1.5. REALISTICNESS

We interpret Realisticness as meaning that a trajectory is likely to be generated by a policy trained on the reward function
that is being explained. Intuitively a trajectory is more likely if it achieves a high reward on the reward function. To make
this unbiased to the length of the trajectory we take the average reward per step. Further, to not bias the criteria to parts of the
environment where high rewards are easily achieved we use the reward achieved by the original trajectory as a comparison:
Realisticness= Rθ(tcf )−Rθ(torg).
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B.1.6. SPARSITY:

We interpret this as meaning that the counterfactual and original trajectories should be shorter so that humans do
not have to compare many behaviours and states. Thus we sum up the length of the original and counterfactual:
Sparsity(torg, tcf ) = len(torg) + len(tcf ).

B.2. Normalisation of quality criteria

After we have measured the quality criteria of a CTE, we want to combine them into a scalar by taking the weighted sum.
Before doing so we normalise each criterion to a range of [0, 1]. This requires finding a maximum (normc

max) and minimum
(normc

min) possible value that each criterion c can take on. We do this approximately in an adaptive fashion, by

1. Starting with normc
max = 1 and normc

min = 0.

2. Using these normalisation values DaC and MCTO generate 20 CTEs for a random set of weights.

3. Finding the minimum normc′
min = min and maximum normc′

max = 1 values for c in the CTEs.

4. Updating the normalisation parameters if more extreme values were found
normc

max = max(normc
max, norm

c′
max) and normc

min = max(normc
min, norm

c′
min).

5. If the normalisation values were adapted for any c: Repeat from Step 2.

When performing this procedure for our experiments, we also manually altered hyperparameters and settings of the
generation algorithms between repeats to account for the fact that some settings can lead to more extreme values.

B.3. Pseudocode for Deviate and Continue

Pseudocode 2 shows how DaC is implemented.

B.4. Implementation of Extracted Features and Labels

After the CTEs were generated we extracted features from them, which are then used to train the proxy-human model.
For both the original and counterfactual partial trajectory we extract 46 handcrafted features F (t) = {f0, ..., f45} and
the average rewards r. Here t = {(sn, an), ..., (sm, an)} denotes a partial trajectory with state action pairs with length
|t| = m− n. Furthermore, in a state s we denote humans(s) as the number of humans that are still in danger, H(s) as a
list of the x-y-coordinates of all unsaved humans and px(s) and py(s) as the x- and y-coordinate of the player.

We only extract features on the level of partial trajectories, not for single states. One can expect that a significant amount of
detail gets lost when only considering features on the trajectory level since some aspects which factor into the rewards for
single states get lost. However, we want the proxy-human model to make predictions about partial trajectories and not only
single states so that it can evaluate multi-step behaviour. Since trajectories can have different lengths we cannot simply feed
it all single-state features, but need to accumulate them into a feature vector of the same dimensionality. The features are
normalised across the set of CTEs to have a mean of 0 and a standard deviation of 1.

List of Features:
Features about humans:

1. Humans saved: How many humans did the agent save during the partial trajectory? humans(sm)− humans(sn).

2. Unsaved humans: On average over the steps in the trajectory how many humans were not saved yet?
1
|t|Σ

m
i=nhumans(si).

3. Final number of unsaved humans: At the end of the partial trajectory, how many humans are not saved yet?
humans(sm).

4. Number of humans: In how many of the steps in the trajectory were there n ∈ {0, ..., 7} humans still in danger? For

each n: Σm
i=n

{
1 if humans(si) = n

0 otherwise
.
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Algorithm 2 Deciate and Continue

Input: full trajectory τorg, environment env, actions A, policy πθ, ndeviations

candidates = [] % store candidate CTEs
for (snorg, a

n
org) in τorg do

scf = snorg
tcf = [scf ]
for i in [0, ndeviations) do

% DEVIATE from the original
repeat
acf = πθ(a ∈ A|scf ) % Resample acf until it leads to a different state
scf = env.step(scf , acf )

until scf ̸= sn+i+1
org

APPEND(tcf , (scf , acf ))
end for
acf = {aend with pDaC(end) | πθ(a|s) otherwise } % CONTINUE using the policy πθ

while acf ̸= aend do
scf = env.step(scf , acf )
APPEND(tcf , (scf , acf ))
acf = {aend with pDaC(end) | πθ(a|s) otherwise } % End trajectory with likelihood pDaC(end)

end while
torg = SUBSET(τorg, snorg, |tcf |) % Subtrajectory from snorg with same lengths as tcf
APPEND(candidates, (torg, tcf ))

end for
Return: argmaxc∈candidatesρ(c) % Return the highest rated candidate

5. Average Distance between humans: How far are the humans apart in Euclidean distance averaged over all pairs of
humans? 1

humans(s)2Σ(hx,hy)∈H(s)Σ(h′
x,h

′
y)∈H(s)|hx − h′

x|+ |hy − h′
y|.

Features about the fire extinguisher, which is located at the x-y-coordinates (6, 6):

6. Standing on fire extinguisher: For how many steps did the agent use the fire extinguisher?

Σm
i=n

{
1 if px(si) = 6 ∧ py(si) = 6

0 otherwise

7. Distance to fire-extinguisher: On average what is the Euclidean distance between the agent and fire-extinguisher?
1
|t|Σ

m
i=n|px(si)− 6|+ |py(si)− 6|

Features about the actions of the agent:

8. Could have saved: Sums over the trajectory in how many states the agent stood next to a human and could have saved
them, but failed to do so. This means in the state si the Euclidian distance of the player to a human was exactly 1 and
in the next state si+1 the amount of unsaved humans is still the same as in si.

9. Moved towards the closest human: How often did the agent move towards the closest human or save a human? This is
true if the Euclidian distance to the closest human si is larger than in the following state si+1. There is a special case
when the player is standing on the human since it can only interact with the human while standing next to them. Since
it would take 2 actions to save this human (step aside and interact with them) we calculate this as a distance of 2 to this
human. Furthermore, it is true if the number of humans in si is larger than in si+1.

10. Type of action: How often did the agent take a type of action walking, interacting or standing still?

Features about the distance of the agent to humans, where:
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11. Average Distance to humans: On average how close was the agent to the closest human?
1
|t|Σ

m
i=nmin(hx,hy)∈H(si)|px(si)− hx|+ |py(si)− hy|.

12. Distances to humans: In how many steps in the trajectory was the agent d ∈ {0, ..., 10} steps away from the closest
human.

13. Direction of human: How often was the closest human right, left, down or up from the agent? For each of the directions,
it counts in how many states the closest human was in that direction. If the closest human is to the top-left it counts
towards both up and left.

Features about the position of the agent?

14. Position of the agent: Average x and y position of the agent. 1
|t|Σ

m
i=npx(si) (equivalent for y).

15. Steps next to the wall: For how many steps was the agent next to the wall? Counts for how many of the states the
agent was positioned next to the wall as the number of states s ∈ t which fulfil: px(s) = 1 ∨ px(s) = 6 ∨ py(s) =
1 ∨ py(s) = 6.

16. Steps in the middle: Counts for how many states s ∈ t the agent stood in the middle, thus fulfilling: (px(s), py(s)) ∈
{(3, 3), (3, 4), (4, 3), (4, 4)}.

17. Steps between middle and wall: For how many states s ∈ t was the agent not in the middle or next to the wall?

18. Time spent in quadrant: For how many steps was the agent in the top-left (px ≤ 3∧py ≤ 3), top-right (px > 3∧py ≤ 3),
bottom-left (px ≤ 3 ∧ py > 3) or bottom-right quadrant (px > 3 ∧ py > 3)?

Other:

19. Length: Number of steps in the partial trajectory |t|.

B.5. Hyperparameters for AIRL & PPO

Table 3 shows the hyperparameters that were used to train PPO on the ground-truth reward function R∗ and generated the
demonstrations which Rθ was learned from.

Table 4 displays the hyperparameters for Adversarial Inverse Reinforcement Learning that is used to learn a reward function
Rθ from the demonstrations. Furthermore, it also learns a policy πθ alongside the reward function, which is used to generate
original trajectories and is sometimes referred to during the generation of CTEs.

Hyperparameter Value
Environment Steps 6e6

Learning Rate 1e-4
Batch Size 12

epochs 5
γ 0.999

Entropy Regularization 0.1
ϵ-clip 0.1

Table 3. Hyperparameters of PPO used to generate the demonstra-
tions

Hyperparameter Value
Environment Steps 3e6

Learning Rate Discriminator 5e-4
Learning Rate PPO 1e-5

Batch Size Discriminator 12
Batch Size PPO 12

PPO epochs 5
γ 0.999

ϵ-clip 0.1

Table 4. Hyperparameters for Adversarial Inverse Reinforcement
Learning

C. Influence and Trade-offs in quality criteria
This section explores what trade-offs and synergies exist between the quality criteria, how these influence the choice of
CTEs and how the different generation algorithms perform on the quality criteria.
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Figure 6. The average Pearson correlations between quality criteria of candidate CTEs in DaC.

C.1. Trade-offs and influence of quality criteria

Maximising the quality value ρ, which combines six quality criteria, is a multi-objective optimization problem, where the
different aspects of the objective are combined into a decision by taking the normalised, weighted sum of criteria (see
Appendix B.2). Thus we want to analyse the trade-offs and synergies between criteria. To study this we consider the
correlations between quality criteria of the candidate CTEs, not only over the CTEs that are finally chosen.

Experimental Setup: DaC is employed to generate 1 CTE for each of the 1000 sets of weights ωrandom. For each run of
DaC we measure the quality criteria and calculate their Pearson correlation between each quality criterion. We then average
the resulting correlations over the 1000 runs.

Results: There are significant negative correlations between Validity and Proximity, Diversity and Sparsity. Diversity is further
negatively correlated with State Importance and Sparsity. Lastly, there is a positive correlation between Validity and State
Importance.

Discussion: We hypothesise that the trade-off of Validity with Sparsity and Proximity appears because Validity pushes for
longer and more dissimilar trajectories that can result in larger differences in rewards, while Sparsity pushes for shorter and
Proximity for more similar trajectories. However, Validity does synergise with State Importance, likely because both criteria
prefer phases in the environment, where differences in rewards can be higher. Diversity trades off against State Importance
and Sparsity, because these criteria prefer certain start points and lengths of trajectories, while Diversity pushes for different
start points and lengths. Possibly for the same reason, Diversity is negatively correlated with Validity.

Overall these results show that there are important trade-offs between quality criteria. To navigate these trade-offs it is
important to carefully assign priorities between weights, that are adapted to the users’ preferences. Further, these trade-offs
pose a require the generation algorithms to find good compromises between the criteria.

C.2. Performance of Generation Algorithms on Quality Criteria

This Appendix provides the scores achieved on the individual quality criteria by each generation algorithm in Experiment 2
(see Section 5.2).

Figure 7 shows that MCTO achieved the highest average quality value, but did not perform best on every quality criterion.
The good performance of MCTO is largely attributed to its significantly higher scores on Realisticness, while DaC performed
slightly better on Validity and State importance. Across most criteria, MCTO and DaC scored higher than Random. This
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indicates that MCTO was best able to navigate the trade-offs between quality criteria allowing it to score high on the quality
value.

It is also notable that the average values and ranges of quality criteria differed. Sparsity has very high averages but falls in a
small range of values. Comparatively, Diversity has very low average values and the scores of Validity have a large range.
This is a byproduct of the normalisation procedure. Each criterion is normalised to a range of [0, 1] through the highest and
lowest scores recorded for that criterion. While most trajectories are very short, thus scoring high on Sparsity, the longest
ones can be very long. This causes most values to be very high for Sparsity. For the opposite reason, values of Diversity
are normalised to be very low. For most generated CTEs there are a lot of previous CTEs, making it hard to be significantly
different. However, there are some early CTEs which did score very high on Diversity and thus stretched the normalised
range upwards. Values for Validity do not fall in such a big range. Thus they are left with a bigger deviation after being
normalised.

Importantly, a quality criterion with higher average values does not have a larger influence on which CTE. This is investigated
in Appendix C.3.
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Figure 7. For each quality criterion (left figure) and the quality value ρ (right figure), the average normalised value and upper & lower
quartile achieved by the different generation methods are shown.

C.3. Influence of quality criteria on the choice of CTE

The previous section C.1 indicated that there are trade-offs between quality criteria which need to be navigated in the
multi-objective optimization problem of finding the CTE with the highest quality value. We want to find out whether some
quality criteria have more or less influence on which CTE gets chosen.

Experimental Setup: Similarly to the Experiment in Appendix C.1, DaC is employed to generate 1 CTE for each of the
1000 random sets of weights ωrandom. We record the quality criteria for the chosen CTE (the one that is shown to the user),
but also for all candidate CTEs that were not chosen. Based on this we record for each criterion and each chosen CTE 1)
how high the chosen CTE ranks amongst candidates according to that criterion (percentile ranking), 2) the value of the
criterion compared to the criterion’s highest candidate CTE (relative value) and 3) the correlation between the criterion and
the quality values ρ (ρ-correlation).

Results: Looking at Table 5 it stands out that Validity and State Importance often get an option they rank very highly
(better than 79.6% and 82.7% respectively), but that has a much lower value relative to their favourite options (0.61 and
0.6 times as high as their favourite). Their values do have the strongest correlation with the quality values (0.34 and 0.32).
On the other hand, Proximity, Realisticness and Sparsity often have to content themselves with a CTE that they don’t rank
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quality criteria percentile ranking ↑ relative value ↑ ρ-correlation ↑
mean | median mean | median

Validity 79.6% | 95.9% 0.61 | 0.68 0.34
Proximity 55.7% | 64.4% 0.9 | 0.91 0.25
Diversity 36.6% | 28.8% 0.37 | 0.27 -0.1
State Importance 82.7% | 91.8% 0.6 | 0.58 0.32
Realisticness 69.7% | 93.2% 0.9 | 0.93 0.12
Sparsity 52.9% | 56.2% 0.92 | 0.96 0.18

Table 5. Statistics that describe how influential quality criteria are for determining the CTE in DaC. 1000 chosen CTEs are compared to
their respective candidate CTEs and for each criterion we display on average how high the chosen CTE ranks, the value of the chosen
CTE compared to the criterion’s favorite and its correlation with the quality value.

ω Validity Proximity Diversity State Importance Realisticness Sparsity

contrastive best ↑ 0.982 0.98 0.576 0.528 0.303 0.851

M
C

TOworst ↓ 0.126 0.213 0.492 0.943 0.052 0.752

single best ↑ 0.878 0.92 0.915 0.674 0.639 0.657
worst ↓ 0.17 0.496 0.205 0.968 0.203 0.633

contrastive best ↑ 0.902 0.658 0.405 0.587 0.12 0.988

D
aCworst ↓ 0.006 0.267 0.891 0.924 0.353 0.579

single best ↑ 0.878 0.92 0.915 0.674 0.639 0.657
worst ↓ 0.412 0.836 0.38 0.087 0.042 0.748

Table 6. The sets of weights ω (out of 30) that lead to the most and least informative CTEs for a Neural Network when optimised by
MCTO or DaC for the contrastive and single task.

highly (55.7%, 69.7% and 52.9%), but get a value close to their highest rated CTE (0.9, 0.9 and 0.92 times as good as their
favourite). Further, they have lower correlations (0.25, 0.12 and 0.18) with the quality values. Lastly, Diversity scores lowest
on all three measurements.

Discussion: Table 5 shows us that criteria often did not get their most preferred outcome. This is shown by the fact that
criteria mostly didn’t get their top-ranked CTE chosen. This supports our conclusion from Appendix C.1 that there are real
trade-offs between the criteria, which means there is no easy choice which satisfies all criteria.

It is interesting that Validity and State Importance score high on percentile ranking and qc-correlation, but low on relative
values, while Proximity, Realisticness and Sparsity show the opposite trend. This phenomenon emerges because values
decrease steeply when moving down the ranking of CTEs according to Validity and State Importance. Thus, CTEs that rank
relatively high are already much worse than their highest-rated option. This means these criteria often don’t achieve high
absolute values. However, the large differences in values of these criteria cause large differences in the weighted sum. Thus
they have an outsized impact on the quality value and the final decision. On the other hand Proximity, Realisticness and
Sparsity have a less steep distribution of values, thus “weaker opinions” about the choice of CTEs and end up influencing
the weighted sum less.

It stands out that Diversity does not have a strong influence on the choice of CTE. This might be because Diversity is
negatively correlated with multiple other criteria and thus gets crowded out when calculating the weighted sum. Furthermore,
Appendix C.2 showed that Diversity has a small range of values, which might further contribute to its weak influence.

C.4. Most and Least informative set of weights

Experimental Setup: To provide further insight into which quality criteria are important to create informative CTEs, we
find the set of weights that lead to the most and least informative CTEs. Additionally, the most informative weights found
here for each generation algorithm are also those used to generate CTEs in Experiment 1 (see Section 5.1).

In Experiment 3 (see Section 5.3) we test the informativeness of 30 sets of CTEs generated by 30 different sets of weights
for the quality criteria ω ∈ ω = {ωV alidityj

, ..., ωSparsityj
}30j=1. We use both MCTO and DaC to generate CTEs and train

10 Mϕs on each set of CTEs. From that, we identify the best and worst performing set of weights ω on the single and
contrastive task.
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Results: Table 6 shows that the most informative CTEs generated by MCTO for an NN have high Validity and Proximity,
while the least informative ones have high State Importance and Sparsity. For the most informative weights for contrastive
ωSparsity was high, while ωDiversity was high for single.

When generating highly informative CTEs with DaC the contrastive task ωV alidity and ωSparsity were high, while the least
informative CTEs were generated with high ωDiversitiy and ωStateImportance. To score high on the single task, ωV alidity,
ωProximity and ωDiversity were high, while ωSparsity and ωProximity were high for the lowest scores.

While DaC and MCTO agree on which set of weights leads to the most informative CTEs for the single task, they disagree
on the three other measures.

Discussion: These results again highlight the importance of Validity for creating CTEs that are informative to a Neural
Network. Furthermore, they indicate that State Importance can be harmful. For MCTO, Proximity and Diversity are
clearly helpful. On DaC there are less clear claims that can be made as Proximity, Diversity and Sparsity appear with high
weights when informativeness was high and when it was low. The fact that MCTO and DaC agree on only one out of four
settings, indicates that different generation algorithms do not converge to the same priorities between criteria. However,
since we only sample 30 weights these results might not be highly significant.

D. Ablations and hyperparameters of generation algorithms
D.1. Ablations and hyperparameters of MCTO

In MCTO there are multiple hyperparameters to be adjusted:

• Number of starting points nstarts: MCTO is started at a specific point sn of the original trajectory. We rerun MCTO
nstarts times for different starting states sn ∈ τorg and select the CTE with the highest quality value. The nstarts

starting points are selected as the nstart states which are rated highest by the State Importance criterion.

• Number of iterations niterations: From a given state MCTO starts to explore the tree through selection, expanding,
simulation and back-propagating. niterations denotes the number of iterations of these four steps in a state before a
decision for the next action has to be made.

• Likelihood to terminate pMCTO(end): During each step of the simulation the trajectory is ended with a likelihood of
pMCTO(end).

• Action threshold thresholda: As a heuristic, we do not consider every action as a possible branch in the tree, but only
those actions a that are sufficiently likely according to the policy so that πθ ≥ thresholda.

• Discount factor γ: During backpropagation, a factor γ can be employed to discount the rewards at each node. To switch
discounting off the discount factor is set to γ = 1.

Furthermore, we experiment with two heuristics:

• Expansion heuristic: When deciding which branch to extend, we can choose through uniform sampling (random-
expansion) or according to a heuristic that takes into account an early estimate of the quality value (heuristic-expansion).
This heuristic tries each possible action, assumes the resulting trajectory as a leaf node and calculates the quality value
of the resulting CTE. Then the action which achieved the highest quality value is chosen.

• Action selection during simulation: During the simulation, we can sample actions uniformly (random-simulation) or
according to the policy πθ (policy-simulation).

D.1.1. EXPERIMENTAL SETUP:

We test all different options by using MCTO to generate 100 CTEs each for a set of weights ω =
{ωV alidityj

, ..., ωSparsityj
}100j=1 that is uniformly sampled ωi ∼ U(0, 1). We measure the quality criteria and report

on their quality values to compare options. We keep the following values for all experiments and only alter the parameter
in question: thresholda = 0.003, pMCTO(end) = 0.2, γ = 0.85, niterations, = 10, heuristic-expansion, policy-action
and nstarts = 2. Aside from altering the hyperparameters and measuring the resulting quality values, we also record the
efficiency as the average time needed to generate a CTE ( secondsCTE ).
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Figure 8. Average quality values of quality criteria for CTEs cre-
ated by MCTO with differing number of starting points along
with the efficiency in seconds
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Figure 9. Avg. Quality Value (left y-axis and blue graphs) for
CTEs generated by MCTO and efficiency of generation (right
y-axis with red graphs) using different numbers of iterations
across a setting with (heuristic-expansion) and without (random-
expansion) the expansion heuristic.

D.1.2. RESULTS:

Number of starting points: Figure 8 shows how the quality value of CTEs increases when we choose from more candidate
CTEs produced by MCTO from a larger number of starting points.

It displays a clear trend that increasing the number of starting points increases the quality of the resulting CTE. Further, the
graph seems to be convex with some noise in measurements. This makes sense since having more different options to select
the best from is strictly better, but has diminishing returns when considering more options. However, this comes at the cost
of efficiency, with the time needed to compute a CTE growing linearly with the number of starting points.

Despite the increased computing time and diminishing returns we deem the increase in performance as significant. Thus we
choose to run MCTO for every possible starting state, setting nstarts = 70 for our experiments.

Number of iterations: We test multiple amounts of iterations per step for a setting using “random-expansion” and “qc-
expansion”. Figure 9 shows a slight improvement in quality values with increasing niterations. This is backed by the
small correlation between niterationsand quality values of 0.092 (p = 0.01) for random-expansion and 0.04 (p = 0.18) for
heuristic-expansion. However, with every additional iteration a new simulation needs to be run leading to a roughly linear
decrease in efficiency for random-expansions.

This presents us with another trade-off between quality and computational efficiency. Since the benefits of increasing the
number of iterations are less clear, we choose niterations = 10 for our experiments.

Likelihood to terminate: Values between [0.05, ..., 1.0] are used as the likelihood of the simulation to terminate in a given
step.

Figure 10 shows no clear trend in quality values when increasing pMCTO(end). One can make out an increase in the early
values (0.05−0.2) and a dip around pMCTO(end) = 0.65. However, these observations might be measurement inaccuracies
rather than consistent trends. For low likelihoods of ending (pMCTO(end) ≤ 0.2) there are significant increases in the
computational cost for generating CTEs. This is because individual simulations become longer.

For our experiments, we decide to use pMCTO(end) = 0.35 since it achieves the highest quality value in combination with
random-simulation and is reasonably efficient.

Action threshold: We try a range of values for thresholda ∈ {0.001, 0.003, 0.01, 0.03, 0.1}. There is no clearly best
thresholda recognisable from Figure 11. None of the differences between the action thresholds is significant and it can
be concluded that this hyperparameter is not important for the functioning of MCTO. For our experiments, we choose
thresholda = 0.03.

Discount factor: We test values for the discount factor between [0.7, .., 1.0] applied to the result of a simulation.

Figure 12 does not show a significant impact of the discount factor on the quality value of resulting CTEs. There is also no
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Figure 10. Avg. quality value for CTEs generated by MCTO for different likelihoods of termination during the simulation pMCTO(end).
We show this for policy- and random-simulation along with the efficiency in seconds

CTE
.

Figure 11. Avg. quality value for CTEs generated by MCTO
for different action thresholds thresholda using both random-
and heuristic-expansion.

Figure 12. Avg. quality value for CTEs generated by MCTO
for different discount factors γ using both random- and
heuristic-expansion.

significant correlation linking the discount factor and quality value. We conclude that adding a discount factor does not help
or hinder MCTO in its search and thus choose γ = 1.0 for simplicity.

Expansion Heuristic: To understand how the method for choosing which branch to extend influences the quality value of
the resulting CTEs, we deploy heuristic-expansion and random-expansion across different values for thresholda, γ and
niterations and average the results.

For all three test cases, random-expansion slightly outperforms heuristic-expansion. However, none of the differences are
statistically significant.

This indicates that an early estimation of the quality criteria is not a good heuristic to guide the expansions in the search tree.
This might be because the early estimations do not accurately reflect how promising a branch is to extend. Furthermore,
using the heuristic comes at a significant computational cost. Across all niterations heuristic-expansion needs 61.3 s

CTE ,
while random-expansion only takes 23.2 s

CTE (see Figure 9). Thus we choose to use random-expansion for our experiments.

thresholda γ niterations

heuristic-expansion 1.307 1.314 1.315
random-expansion 1.310 1.320 1.323

p-value 0.912 0.793 0.640

Table 7. The average quality value of CTEs generated by MCTO using heuristic-expansion or random-expansions across multiple values
from thresholda, γ and niterations respectively, along with the p-value indicating the statistical significance in differences between
them.
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Action selection during simulation: We compare the two proposed methods for selecting actions during the simulation,
policy-simulation and random-simulation, across different values for pMCTO(end) and average the quality values of the
resulting CTEs.

There is no statistically significant difference between the two methods with policy-simulation averaging a quality value of
1.295 and random-simulation achieving 1.302. Additionally, Figure 10 shows us that following the policy is less efficient
than choosing randomly. Thus we decide to use random-simulation for our experiments.

D.2. Ablations of Deviate and Continue

We ablate three aspects of DaC:

1. Number of deviations: The counterfactual trajectory can either perform one (”1-deviation”) or multiple (”n-deviations”)
deviations. We use the same process for later deviations as for the first deviation. An action is chosen according to the
policy, but actions which would lead the counterfactual to meet the original trajectory are excluded.

2. Action selection: After deviating from the original trajectory the actions in the counterfactual trajectory can either be
chosen by following the policy πθ (”continue-policy”) or by uniformly sampling random actions (”continue-random”).

3. Likelihood to terminate: At each step of the continuation phase the trajectories have a chance pDaC(end) of ending.

D.2.1. EXPERIMENTAL SETUP:

For each setting DaC is used to generate 200 CTEs each for a set of weights ω = {ωV alidityj
, ..., ωSparsityj

}200j=1 that
is uniformly sampled ωi ∼ U(0, 1). We test the combination of values for n-deviations ∈ {1, 2, 3} and pDaC(end) ∈
{0.05, 0.1, ..., 1.0}. Furthermore, we compare continue-policy and continue-random, while using “1-deviation” and
pDaC(end) = 0.5.

D.2.2. RESULTS:

1-deviation 2-deviations 3-deviations
avg. quality value 1.339 1.334 1.346

Table 8. Average quality value achieved across all values for pDaC(end) for different numbers of deviations.

Number of deviations: Table 8 shows that the differences in quality values between different amounts of deviation steps
are small. In fact, the differences are statistically not significant indicating that the number of deviations is not essential.
However, from Figure 13 we can make out that “3-deviations” outperforms methods with fewer steps on most values for
pDaC(end). This is largely because “3-deviations” regularly achieve higher values for Proximity (p < 0.05). The highest
values are achieved by ”3-deviations” between 0.5 ≤ pDaC(end) ≤ 0.75. We thus choose to use “3-deviations”.

Action selection: Averaged over multiple values of pDaC(end), continuing with the policy achieves an average quality
value of 1.347, while random-continuation achieved 1.351. However, these results are not statistically significant. Since
policy-continuation led to more informative CTEs according to the researchers’ subjective judgement, we choose to use
policy-continuation in our experiments.

Likelihood to terminate: Figure 13 shows a trend that high-quality values are achieved for low pDaC(end) values. As
pDaC(end) rises, quality values first drop until pDaC(end) = 0.25 and then steadily increase to a maximum of around
0.7, before dropping off again. Moderately high values score well because they produce short CTEs that are rated high on
Sparsity. Lower values perform well on Diversity because they can lead to a wide range of lengths of CTEs.

For our experiments, we decide to choose ”3-deviations” with pDaC(end) = 0.55.

D.3. Hyperparameters of Random CTE Generation

To make Random a stronger baseline comparison we perform a hyperparameter search to find the best way of choosing
when to end the random trajectory.
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Figure 13. Quality values achieved by different methods for different values of pDaC(end) ∈
{0.05, ...0.95}.
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D.3.1. EXPERIMENTAL SETUP:

Similarly to DaC and MCTO, at every step in the trajectory Random has a likelihood of pRandom(end) ending the
counterfactual and original trajectory. For multiple values of pRandom(end), 1000 CTEs are generated for 1000 randomly
sampled sets of weights and their quality values ρ are measured.

D.3.2. RESULTS

Figure 14 shows a clear trend where the average quality values achieved by Random first rise until pRandom(end) = 0.15
and then steadily fall. However, pRandom(end) does not strongly influence the performance of Random with quality values
only differing in a range of < 0.04. Consequently, we choose pRandom(end) = 0.15 for our experiments.

E. Ablation for informativeness of quality criteria using DaC
Experimental Setup: The same experimental setup as described in Experiment 3 of the main paper (see Section 5.3) is
used to evaluate the influence of the weights ω of quality criteria for the informativeness of CTEs. In contrast to section 5.3
the CTEs are generated by DaC instead of MCTO.

Results: The weights for Validity ωV alidity correlate the strongest with contrastive performance and also strongly with
single performance. ωRealisticness stands out as highly correlated with single, despite being only slightly correlated with
contrastive. Higher weights for Diversity also indicate higher performance on both tasks. ωStateImportance is not strongly
correlated with both task performances.

Discussions: The results for DaC present notable differences from those for MCTO (see Experiment 3 in section 5.3).
Relatively, Realisticness and Sparsity are more beneficial for making informative CTEs for DaC and Proximity and State
Importance are less important than for MCTO. However, there are also similarities. Validity is very important for both tasks,
and the correlations for Diversity are similar for the two settings.

These results can increase our confidence that Validity and Diversity are generally important criteria for a Neural Network to
learn from. The results also show that the priority between quality criteria does depend on the specific generation algorithm
that is used. This might be because different generation algorithms have different ways of navigating the trade-offs between
quality criteria.

F. Ablation using Linear Model as proxy-human model
In the main experiments, we use a Neural Network as a proxy-human model Mϕ that receives and learns from the CTEs. To
test whether our results are robust to using a different type of explainee we rerun the experiments using a Linear Regression
Model (LM). If results are similar this can give us some indication that they are not only specific to a Neural Network but
might be generally applicable to other explainees.
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Figure 15. Spearman correlation between weights for the quality criteria and the informativeness of the CTEs generated by DaC for Mϕ

for the contrastive and single task. Averaged over 10 models along with the median and upper and lower quartile.

F.1. Importance of Quality Criteria for a Linear Model

This experiment aims to test whether the previous results about the importance of quality criteria hold up when using Linear
Regression Models (LMs) instead of a Neural Networks (NNs) as a proxy-human model Mϕ.

It repeats the Experimental Setup described in Experiment 3 (see Section 5.3), except that Mϕ is represented via LMs
instead of NNs. Specifically, we use Simple Linear Regression Models with a bias term trained via regression. Instead of
performing multi-task learning, as we did with the Neural Network, we simply train two independent Linear Models on the
single and contrastive task respectively.

Experimental Setup: We repeat the experimental setup described in Experiment 3 (see Section 5.3), except that Mϕ is
represented via LMs instead of NNs. Specifically, we use Simple Linear Models with a bias term trained via regression.
Instead of performing multi-task learning, as we did with the Neural Network, we simply train two independent Linear
Models on the single and contrastive task respectively. The Linear Models was trained with learning rate= 0.1 and weight
decay regularisation of 0.01.

Results: For the Linear Model trained on CTEs generated by MCTO, Realisticness was the most important criterion for
both tasks (see Figure 16). Furthermore, it stands out that Diversity is especially important for single, while Validity is
important for both tasks. For all other criteria, their weights are slightly positively correlated with informativeness to the
proxy-human Linear Model.

Similarly, for the informativeness of CTEs generated by DaC Figure 17 shows that Realisticness is the most important
criterion for single, while the weights for Validity ωV alidity correlate strongest with informativeness on the contrastive
task. ωDiversity proves important for both tasks, while ωStateImportance is negatively correlated with informativeness for
contrastive.

Discussion: Overall the results for the importance of quality criteria for informativeness are similar when using a Linear
Model or a Neural Network.

Notable differences for MCTO are that Realisticness is considerably more important for an LM on both tasks and Diversity is
more important for single. Furthermore, State Importance and Sparsity now have a slight correlation with performance.
Validity is relatively less important for the Linear Model than for the Neural Network. For DaC the importance of quality
criteria for informativeness is very similar for the Linear Model and Neural Network.

Overall there are some differences in importance when using MCTO and very few for DaC. This can give us more confidence
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Figure 16. Spearman correlation between the weights of quality
criteria and the performance of the Linear Regression Model
trained on CTEs generated by MCTO on the contrastive and
single task averaged over 10 seeds.
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Figure 17. Spearman correlation between the weights of quality
criteria and the performance of the Linear Regression Model
trained on CTEs generated by DaC on the contrastive and single
task averaged over 10 seeds.

that the importance of different quality criteria for generating informative CTEs is similar for different explainees. However,
we cannot simply extrapolate these results to all possible explainees but need to reevaluate which criteria should take priority.
This applies especially when showing CTEs to humans instead of ML models.

F.2. Informativeness of Explanations for a Linear Model

It’s unclear whether CTEs are especially informative when using a Neural Network as a proxy-human model or whether less
complex architectures benefit equally from CTEs. Thus we ablate Experiment 1 (see Section 5.1) by using Linear Models
instead of Neural Networks as the proxy-human models Mϕ.

Experimental Setup: We repeat the experimental setup from Experiment 1 (see section 5.1). We train the Linear Models
as described in Appendix F.1.

Contrastive Single
0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

iv
en

es

Informativeness of generation methods combined
MCTO
DaC
Random

Figure 18. The informativeness of CTEs generated by MCTO, DaC and Random for a Linear Model on the single and contrastive task.
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Results: DaC performs best on both tasks, while MCTO outperforms Random. Overall informativeness of CTEs is low
for the LMs, scoring a correlation of 0.1− 0.4 with the labels Further, there is very little deviation between models with
different initialisations.

Discussion: In contrast to the Experiment on NNs, LMs are better able to learn from CTEs generated by DaC than by
MCTO. This calls into question the conclusion that MCTO is the most effective generation algorithm. However, the generally
bad performance of the LMs makes it relatively weak evidence about the effectiveness of methods.

Overall the LM achieves a significantly lower performance on both tasks for all algorithms. Likely, the flexibility of the
Neural Network enables it to learn more complex functions that explain the rewards. This also indicates that the Neural
Network learned more complex knowledge about the reward function which is not straightforwardly learned by a LM.
Furthermore, LMs do not benefit from cross-task learning, while the NN had a body that was shared between the contrastive
and single tasks.
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