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Abstract
Qualitative Constraint Networks (QCNs) comprise a Symbolic AI framework for
representing and reasoning about spatial and temporal information via the use of
natural disjunctive qualitative relations, e.g., a constraint can be of the form “Task A
is scheduled after or during Task C”. In qualitative constraint-based reasoning, the
state-of-the-art approach to tackle a given QCN consists in employing a backtracking
algorithm, where the branching decisions during search and the refinement of theQCN
are governed by certain heuristics that have been proposed in the literature. Although
there has been plenty of research on how these heuristics compare and behave in terms
of checking the satisfiability of a QCN fast, to the best of our knowledge there has
not been any study on how they compare and behave in terms of obtaining a tractable
refinement of a QCN that is also robust. In brief, a robust refinement of a QCN can
be primarily seen as one that retains as many qualitative solutions as possible, e.g.,
the configuration “Task A is scheduled after or during Task C” is more robust than
“Task A is scheduled after TaskC”. Here, wemake such a preliminary comparison and
evaluation with respect to prominent heuristics in the literature, and reveal that there
exists a trade-off between fast and robust solving of QCNs for datasets consisting of
instances of Allen’s Interval Algebra and Region Connection Calculus. Furthermore,
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we investigate reasons for the existence of this trade-off and find that more aggressive
heuristics are more efficient at the cost of producing less robust refinements.

Keywords Qualitative constraints · Spatial and temporal reasoning · Robust
refinement · Trade-off

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major and active field of
study in AI that deals with the fundamental cognitive concepts of space and time in
an abstract, human-like manner, via the use of simple qualitative constraint languages
(Ligozat 2013). Such languages consist of symbolic expressions like inside, before,
or north of to spatially or temporally relate two or more objects to one another,
without involving any quantitative information. By extension, QSTR forms a concise
framework that boosts research and applications to a plethora of areas and domains
that deal with spatio-temporal information, such as cognitive robotics (Dylla and
Wallgrün 2007), stream reasoning (Leng and Heintz 2016), and case-based reasoning
and learning (Homemet al. 2020). The interested readermay look into a comprehensive
review of the current status and the future directions of QSTR in Sioutis and Wolter
(2021).

Qualitative spatial or temporal information may be modeled as a Qualitative Con-
straint Network (QCN), which is a network where the vertices correspond to spatial
or temporal entities, and the arcs are labeled with disjunctive qualitative spatial or
temporal relations respectively, e.g., x ≤ y can be a temporal QCN over Z. Given a
QCNN , the literature is particularly interested in its satisfiability problem, which is the
problem of deciding if there exists a spatial or temporal interpretation of the variables
of N that satisfies its constraints, viz, a solution of N . For instance, x = 0 ∧ y = 1
is one of the infinitely many solutions of the aforementioned QCN, and x < y is
the corresponding scenario (i.e., qualitative solution) that concisely represents all the
cases where x is assigned a lesser value than y. In general, for most widely-adopted
qualitative calculi the satisfiability problem is NP-complete (Dylla et al. 2013). In the
sequel, we will be using Interval Algebra (IA) (Allen 1983) as an illustrative example
of a qualitative calculus.

Motivation and contribution

Let us consider the temporal qualitative configuration of Fig. 1, which can be seen as
a simplified QCN of IA as described earlier (these notions are formally defined in the
next section). In qualitative constraint-based reasoning, the state-of-the-art approach
to tackle such a given QCN consists in employing a backtracking algorithm, where the
branching decisions during search and the refinement of theQCN are governed by cer-
tain heuristics that have been proposed in the literature (Renz and Nebel 2007); please
also consult (Sioutis and Wolter 2020) for a latest overview of this approach. Over the
past years, there has been a lot of research on how these heuristics and other related
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Task A Task C

Task B

?

precedes ∨ follows precedes

(a) An initial qualitative temporal configuration.

Task A Task C

Task B

precedes

precedes precedes

(b) The effect of Task A preceding Task B.

Task A Task C

Task B

?

follows precedes

(c) The effect of Task A following Task B.

Fig. 1 In order to obtain a tractable refinement of an initial qualitative configuration, certain disjunctions
of possible relations need to be split into (sub-disjunctions of) relations that can guarantee tractability in
the general case, e.g., precedes ∨ follows (a dichotomy) into either precedes or follows; here, if we place
Task A before Task B, we can deduce a configuration that is very restrictive in terms of allowed relations,
yielding a single qualitative solution, yet if we place Task A after Task B, we can deduce a configuration
that is very flexible/robust in terms of allowed relations, yielding multiple qualitative solutions (viz., 13, if
we view it as an IA (Allen 1983) configuration)

schemes compare and behave in terms of checking the satisfiability of a QCN fast, see
Sioutis and Wolter (2021) and references therein, but, to the best of our knowledge,
there has not been any study on how they compare and behave in terms of obtaining a
tractable refinement of a QCN that is also robust. In brief, here, we consider a robust
refinement of a QCN to be primarily one that retains as many qualitative solutions as
possible; this notion can be seen as an extension of that introduced in Sioutis et al.
(2020), where single qualitative solutions are concerned, and no study takes place
on heuristics for obtaining/approximating them (the presented algorithm is exhaus-
tive). For example, in Fig. 1, placing Task A after Task B instead of before, allows
us to obtain a tractable refinement that maintains 13 possible qualitative solutions
(scenarios) of IA. In this case, choosing either after or before allows us to obtain a
tractable refinement; however, in general, choosing the more flexible (sub-)relation in
every step of the refinement process, may result in obtaining a tractable refinement, or
detecting unsatisfiability, slower than if the choices were more aggressive/restrictive.
In this paper, we aim to study whether such a trade-off exists, by comparing prominent
heuristics in the literature in relation to the quality of their output, i.e., the robustness
and other related measures of the tractable refinements that they help to produce. We
think that gaining a better insight into the output of the different heuristics can have
important implications in cases where QCNs are coupled with other frameworks, such
as planning or machine learning techniques, as constant revision of spatio-temporal
information can be typical in systems where such information is communicated by
different components, and robust QCNs can better withstand such revision.

Example 1 Let us ground Fig. 1 and the discussion above in a realistic scenario, and
imagine that the tasks mentioned in the figure are tasks scheduled in a factory. The
temporal configuration itself might well be the result of a human, or an AI system,
who took into account certain prerequisites (e.g., that a task has to be executed before
another one in the production pipeline) and made an initial incomplete schedule of
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how the tasks should be executed. The question is: how should the factory finalize
schedule production so that it may be least disturbed in the future? Indeed, in dynamic
environments like these, where there might be unpredictable incidents concerning
resource availability (e.g., power outages) and/or re-designing the production pipeline
can be a frequent occurrence, extracting a complete schedule with no regard for its
robustness would hardly be advisable. Instead, on one hand, we argue that some
measures to compare the quality of the output of different solving strategies should at
least exist, which we introduce in this work, and, on the other hand, that the efficiency
of these strategies should be factored in, which is also part of our contribution here.
In the discussed example, placing Task A after Task B instead of before would allow
us to recover a complete schedule as fast as having Task A precede Task B, but, as
explained earlier, the former case would be much more robust compared to the latter
one.

Such a study on measures of withstanding perturbations for QCNs, becomes even
more important in light of how hard it is in practice to repair QCNs that have been
invalidated by some revision(s) (Condotta et al. 2015); specifically, this problem is at
least as hard as solving aQCN in the first place in theory, but much more so in practice
(Condotta et al. 2015, 2016).

The rest of the paper is organized as follows. In Sect. 2 we give some preliminaries
on QSTR. Next, in Sect. 3 we present our study on robust vs fast solving of QCNs and
comment on the outcome. Finally, in Sect. 4 we discuss related work, and in Sect. 5
we draw some conclusive remarks and give directions for future work.

2 Preliminaries

A binary qualitative spatial or temporal constraint language is based on a finite set B of
jointly exhaustive and pairwise disjoint relations, called base relations (Ligozat 2013)
and defined over an infinite domain D. The base relations of a particular qualitative
constraint language can be used to represent the definite knowledge between any two
of its entities with respect to the level of granularity provided by the domain D. The
set B contains the identity relation Id, and is closed under the converse operation
(−1). Indefinite knowledge can be specified by a union of possible base relations,
and is represented by the set containing them. Hence, 2B represents the total set of
relations. The set 2B is equipped with the usual set-theoretic operations of union and
intersection, the converse operation, and the weak composition operation denoted by
the symbol � (Ligozat 2013). For all r ∈ 2B, we have that r−1 = ⋃{b−1 | b ∈ r}.
The weak composition (�) of two base relations b, b′ ∈ B is defined as the smallest
(i.e., most restrictive) relation r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈
B | b′′∩(b ◦ b′) 
= ∅}, where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈
b ∧ (z, y) ∈ b′} is the (true) composition of b and b′. For all r , r ′ ∈ 2B, we have that
r � r ′ = ⋃{b � b′ | b ∈ r , b′ ∈ r ′}.

As an illustration, consider thewell-known qualitative temporal constraint language
of Interval Algebra (IA), introduced by Allen (1983). IA considers time intervals (as
temporal entities) and the set of base relations B = {eq, p, pi , m, mi , o, oi , s, si ,
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precedes p meets m overlaps o

x y x y x y

preceded by pi met by mi overlapped by oi

y x y x y x

starts s during d finishes f

x y x y xy

started by si contains di finished by fi

y x y x yx

equals eq

x = y

Fig. 2 A representation of the 13 base relations b of IA, each one relating two potential intervals x and y as
in x b y; here, bi denotes the converse of b (viz., b−1 formally)

X Y X Y X Y X Y
Y

X
Y

X

X DC X X EC Y X PO Y X EQ Y
X TPP Y

Y TPPi X

X NTPP Y

Y NTPPi X

Fig. 3 The base relations of RCC8

d, di , f , f i} to encode knowledge about the temporal relations between intervals
on the timeline, as described in Fig. 2. As another example, the Region Connection
Calculus (RCC8) (Randell et al. 1992) considers spatial regions and the set of base
relations B = {DC , EC , EQ, PO , T PP , T PPi , NT PP , NT PPi} to reason about
topological relations between regions, as can be seen in Fig. 3.

The problem of representing and reasoning about qualitative spatial or temporal
information can be modeled as a qualitative constraint network (QCN), defined as
follows:

Definition 1 A QCN is a tuple (V ,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an entity
of an infinite domain D;

• and C is a mapping C : V × V → 2B such that C(v, v) = {Id} ∀v ∈ V , and
C(v, v′) = (C(v′, v))−1 ∀v, v′ ∈ V .

An exampleQCN of IA is shown in Fig. 4a; for clarity, converse relations or Id loops
are not shown in the figure.

Definition 2 Let N = (V ,C) be a QCN, then:

• a solution ofN is a mapping σ : V → D such that ∀(u, v) ∈ V ×V , ∃b ∈ C(u, v)

such that (σ (u), σ (v)) ∈ b; andN is satisfiable iff it admits a solution (see Fig. 4b);
• a refinementN ′ ofN , denoted byN ′ ⊆ N , is aQCN (V ,C ′) such thatC ′(u, v) ⊆
C(u, v) ∀u, v ∈ V ;

• N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation {b} with
b ∈ B;
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x1 x2

x3x4

{p, m}

B

{d, s, si} {oi}
{oi, m}

{pi, eq}

(a) A satisfiable QCN N .

x1

x2

x3

x4

(b) A solution σ of N .

x1 x2

x3x4

{m}

{d}
{d} {oi}

{oi}

{eq}

(c) A scenario S of N .

Fig. 4 Figurative examples of QCN terminology using IA

• a scenario S of N is an atomic satisfiable refinement of N (see Fig. 4c);
• the constraint graph ofN , denoted byG(N ), is the graph (V , E)where {u, v} ∈ E
iff C(u, v) 
= B and u 
= v;

• N is trivially inconsistent, denoted by∅∈N , iff∃v, v′ ∈ V such thatC(v, v′) = ∅.
Given a QCN N = (V ,C) and v, v′ ∈ V , the following operation substitutes

C(v, v′) with a relation r ∈ 2B to produce a new, modified, QCN: N[v,v′]/r with
r ∈ 2B yields the QCN N ′ = (V ,C ′), where C ′(v, v′) = r , C ′(v′, v) = r−1 and
C ′(u, u′) = C(u, u′) ∀(u, u′) ∈ (V × V )\{(v, v′), (v′, v)}.

We recall the definition of �
G-consistency (Chmeiss and Condotta 2011) [cf. Ligozat

(2013)], which entails consistency for all triples of variables in a QCN that form
triangles in an accompanying graphG, and is a basic andwidely-used local consistency
for reasoning with QCNs.

Definition 3 Given a QCN N = (V ,C) and a graph G = (V , E), N is �
G -consistent

iff ∀{vi , v j }, {vi , vk}, {vk , v j } ∈ E we have that C(vi , v j ) ⊆ C(vi , vk) � C(vk, v j ).

We note here that if G is complete, �
G-consistency becomes identical to

�-consistency (Ligozat 2013), and, hence, �-consistency is a special case of
�
G-consistency. In the sequel, given a QCN N = (V ,C) of some calculus and a
graph G = (V , E), we assume that the closure of N under �

G-consistency, i.e., the⊆-maximal �
G-consistent refinement of N , denoted by �

G(N ), is computable; this is
true for most widely-adopted calculi (Dylla et al. 2013).

Over the past few years, the use of chordal graphs has become prominent in tackling
aQCN. In short, a graph is chordal if every cycle of length> 3 has a chord, which is an
edge that is not part of the cycle but connects two vertices of the cycle. Triangulating
the constraint graph of a QCN instead of completing it allows us to reduce the search
space, whilst preserving the conditions that can lead to tractability of the QCN; see
Chmeiss and Condotta (2011); Huang (2012) in the context of some example calculi.

Note 1 In the sequel, we will also be considering triangulations of the constraint
graphs of QCNs, but our approach works for traditional complete graphs too.

To exploit chordal graphs G in the context of our work, we introduce the notion of
a partial scenario of a QCN with respect to a graph G, or, simply, a G-scenario of that
QCN.
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Definition 4 Given aQCNN = (V ,C) and a chordal graphG = (V , E)withG(N ) ⊆
G, a G-scenario of N is a satisfiable refinement (V ,C ′) of N such that ∀v ∈ V ,
C ′(v, v) = {Id}, and ∀(v, v′) ∈ E , C ′(v, v′) = {b}, where b ∈ C(v, v′).

Informally, a G-scenario of a given QCN can be viewed as a scenario of that QCN (see
Definition 2 and Fig. 4c) that is restricted to the edges of some accompanying graph
G.

3 Robust vs fast solving of QCNs

In this section we present our study on robust vs fast solving of QCNs. In particular,
we build upon the work of Sioutis and Wolter (2020) that introduces and evaluates
numerous heuristics for efficiently tackling QCNs in terms of computation time, and
introduce and use measures to compare these heuristics in terms of the quality of their
output too, i.e., the robustness and other related measures of the results that they help
to produce. First, we recall what the state-of-the-art approach for tackling a QCN is
and how those heuristics play a role in doing so.

3.1 Identifying satisfiable tractable refinements

In qualitative constraint-based reasoning, the state-of-the-art approach to check the
satisfiability of a given QCN N , consists in splitting every relation r that forms a
constraint between two variables in N , into a sub-relation r ′ ⊆ r that belongs to a
set of relations A over which the QCN becomes tractable (Renz and Nebel 2007).
In particular, for most widely-adopted qualitative calculi (Dylla et al. 2013), such
split sets are either known or readily available (Renz 2007), and tractability is then
achieved via the use of some local consistency in backtracking fashion; after every
refinement of a relation r into a sub-relation r ′, the local consistency is enforced to
know whether that refinement is valid or backtracking should occur and another sub-
relation should be chosen Renz and Nebel (2007, Sect. 2). Consult also Algorithm 1
for an example of such a procedure. One of the most essential and widely-used such
local consistencies is �

G-consistency, where G can be either the complete graph on
the variables of N (Ligozat 2013), or a triangulation of the constraint graph of N
(Chmeiss and Condotta 2011).

Example 2 The subset HIA of the set of relations of Interval Algebra (Nebel 1997) is
tractable for �

G-consistency, i.e.,
�
G-consistency is complete for deciding the satisfia-

bility of any QCN defined over HIA with respect to a triangulation G of its constraint
graph (Chmeiss and Condotta 2011). That subset contains exactly those relations that
are transformed to propositional Horn formulas when using the propositional encod-
ing of Interval Algebra (Nebel 1997). Let us consider a constraint that involves the
relation {mi, di, si, p,m, d, s}. This relation does not appear in the subset HIA and
hence tractability is not guaranteed in general, but it can be split into sub-relations
{mi}, {di, si}, {p,m}, {d, s} that belong toHIA.
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Algorithm 1: Refinement(N , G, A , f)

in : A QCNN = (V ,C), a graph G = (V , E), a subset A ⊆ 2B, and a heuristic f.
out : A refinement ofN w. r. t. G over A , or the empty QCN ⊥V .

1 begin
2 N ← �

G (N );

3 if ∅ ∈ �
G (N ) then return ⊥V if ∀{v, v′} ∈ E, C(v, v′) ∈ A then return N

4 (v, v′) ← {v, v′} ∈ E such that C(v, v′) /∈ A ;
5 foreach r ∈ subrelationSelection(N , G, A , (v, v′), f) do
6 result ← Refinement(N[v,v′]/r , G, A , f);

7 if result 
= ⊥V then return result

8 return ⊥V ;

Clearly, once all of the relations that form a constraint between two variables in
a QCN N are split into sub-relations that belong to some tractable set of relations, a
tractable refinementN ′ ofN is achieved.At this point, satisfiability of the refinedQCN
may be decided by a last single application of �

G -consistency, and, upon success, G-
scenarios of thatQCNmay be generated if needed. Thus, the choice of the sub-relation
in every step of the refinement process is of particular importance, as it directly affects
the quality of the produced refined QCN (e.g., in terms of the number of G-scenarios
/ qualitative solutions it holds). That choice occurs in line 6 of Algorithm 1 and is
governed by a heuristic f.

3.2 Branching heuristics

As described in Sect. 3.1, when choosing the next sub-relation to instatiate a constraint
with and consequently refine a given QCN, branching heuristics are employed to
determine the least-constraining sub-relation. In particular, that choice occurs in line 6
of Algorithm 1, and the branching heuristic pertains to the function f given as input
to the algorithm. This scheme has been traditionally implemented in a static manner,
where base relations are assigned a static weight a priori and the weight of a sub-
relation is the cumulative weight of its base relations (van Beek and Manchak 1996).
This heuristic is referred to as static.

The dynamic heuristics described in Sioutis and Wolter (2020) decide which sub-
relation to choose, based on the count of local models of the base relations in the
sub-relations. LetN↓V ′ , with V ′ ⊆ V , denote the QCNN = (V ,C) restricted to V ′,
the notion of local models is then defined as follows:

Definition 5 Given aQCN N = (V ,C), a graphG = (V , E), and an edge {v, v′} ∈ E ,
the local models of a base relation b ∈ C(v, v′) are all the scenarios S = (V ′,C ′) of
N ↓V ′ , where V ′ = {v, v′, u} ∀u such that {v, u}, {u, v′} ∈ E (V ′ corresponds to any
triangle in G involving {(v, v′)}), and C(v, v′) = {b}.

The proposed dynamic heuristics in Sioutis andWolter (2020) are as follows, ranked
in terms of efficiency from better to worse performing.
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• dynamic_min: choose the sub-relation for which the base relation with the fewest
local models has the most local models among the respective base relations of the
rest of the sub-relations.

• dynamic_avg: choose the sub-relation whose base relations have the highest
average count of local models.

• dynamic_max: choose the sub-relation that contains the base relation with the
most local models.

• dynamic_sum: choose the sub-relation whose base relations have the highest
cumulative count of local models.

Specifically, in an evaluation of the efficiency of those heuristics for hard QCNs of
Interval Algebra (Sioutis and Wolter 2020), dynamic_min proved to be the fastest in
the phase transition, closely followed by dynamic_avg, and static, dynamic_sum, and
dynamic_max were found to be clearly slower.

3.3 Robustness measures of satisfiable tractable refinements

Generally, robustness can be defined as “the ability of a system to resist change without
adapting its initial stable configuration” Wieland and Wallenburg (2012); see also
Verfaillie and Jussien (2005) and references therein. Naturally, a system being robust,
limits as much as possible the need for successive repairs, and hence can play an
important role in environments that are prone to perturbation and unexpected change,
such as real-life configurations or systems of heterogeneous components (e.g., based
on logic and machine learning) that process the same information. In our context, we
are interested in measuring the robustness of tractable refinements, or, in other words,
the likelihood of those satisfiable tractable refinements to withstand a sequence of
perturbations, where a perturbation is defined to be the elimination of a base relation
from the constraint graph of an initialQCN (fromwhich the refinement was produced).

Definition 6 (Perturbation) Given a QCN N = (V ,C), a perturbation removes one
base relation b ∈ C(v, v′), with (v, v′) ∈ E(G(N )); we then say that N has been
perturbed.

Next, we define certain notions that relate to the concept of a perturbation and that
we will use in the sequel.

Definition 7 (Notions of resistance) Given a QCNN = (V ,C), a satisfiable tractable
refinementN ′ = (V ,C ′) ofN , and a perturbation toN that removes its base relation
b ∈ C(v, v′), with (v, v′) ∈ E(G(N )), we say that N ′1

• is affected by the perturbation iff b ∈ C ′(v, v′);
• withstands the perturbation iff N ′

[v,v′]/r is satisfiable, where r = C ′(v, v′)\{b};
• survives the perturbation iff it both is affected by and withstands that perturbation.

It is straightforward to obtain the following logical implications with respect to the
notions of Definition 7:

1 Note that the perturbation is applied toN , not to its refinement:N ′; thus, it is possible that the removed
base relation b ∈ C(v, v′) does not belong to C ′(v, v′), viz., b /∈ C ′(v, v′) (in this case, N would not be
affected by the perturbation).
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Proposition 1 Given a QCN N = (V ,C), a satisfiable tractable refinement N ′ =
(V ,C ′) of N , and a perturbation to N that removes its base relation b ∈ C(v, v′),
with (v, v′) ∈ E(G(N )):

• if N ′ is not affected by the perturbation, then N ′ withstands the perturbation;
• ifN ′ does not withstand the perturbation, thenN ′ is affected by the perturbation.

Proof In the first case, b /∈ C ′(v, v′), and as a result C ′(v, v′)\{b} = C ′(v, v′), thus
N ′

[v,v′]/(C ′(v,v′)\{b}) is satisfiable; the second case is the contrapositive of the first one.��
Theoretically, in order to compute the robustness of a tractable refinement of some

QCNN = (V ,C), we would need to consider all possible sequences of perturbations2

pertaining to N , which are O(|V |2(|V |2!)) in number (i.e., number of permutations
of O(|V |2) constraints, viz., O(|V |2!), times O(|V |2) number of constraints). Thus,
we consider certain more practical measures for assessing the robustness of a tractable
refinement, that we describe as follows.

Amount of G-scenarios in a satisfiable tractable refinement

Our primary measure concerns the total number of G-scenarios that exist in a tractable
refinement and that is restricted to the possible combinations of base relations of con-
straints in the constraint graph of a givenQCN (thus, universal relations are disregarded
and only true constraints are considered). Intuitively, the more G-scenarios a tractable
refinement contains, the more likely it is to remain satisfiable after a sequence of per-
turbation invalidates some of those scenarios. It follows that the tractable refinement
with the biggest number of G-scenarios should be able to withstand a longer sequence
of perturbations. Additionally, a bigger set of G-scenarios yields more base relations
per constraint on average once these scenarios are unified; this means that the corre-
sponding refinement can stay valid for a wider variety of changes. We note that all
G-scenarios of a tractable refinement can be generated with Algorithm 1, by providing
the tractable refinement as the input QCN to the algorithm, along with a subsetA that
only contains the singleton relations of the calculus (then, every relation is split into
singleton relations).

Average withstood perturbations for a satisfiable tractable refinement

Our secondary measure concerns the total number of perturbations that a tractable
refinement can withstand on average, i.e., the average length of the sequence of per-
turbations until the refinement becomes unsatisfiable. Although we cannot perfectly
compute the robustness of a tractable refinement by considering all possible sequence
of perturbations, we can approximate it by averaging over many sampled sequences
of perturbations. We compute this value by sampling and applying a sequence of
perturbations to the QCN N until the initially satisfiable tractable refinement N ′ is
not satisfiable anymore. The length of the sequence indicates how many perturbations
N ′ withstood. Further, we record the number of perturbations in the sequence that

2 A sequence of perturbations describes a series of perturbations applied toN one after the other.
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this refinement survives and is not affected by (please see again Definition 7). By
Proposition 1 we can infer that every withstood perturbation was either survived by
the tractable refinement or did not affect the tractable refinement:

avg. # withstood by N ′ = avg. # survived by N ′ + avg. # not affected N ′

When sampling perturbations we assume that all the constraints C(v, v′) in a given
QCN N = (V ,C) are equally likely to be perturbed, and that all base relations b
within a constraint C(v, v′) are equally likely to be removed during a perturbation to
that constraint.

This average number of withstood perturbations can be seen as a good measure of
robustness for a tractable refinement and also complements our primary one, viz., that
of calculating the total number ofG-scenarios in the tractable refinement. Furthermore,
the amount of perturbations that the refinement survives, or is unaffected by, gives us
insights into why a tractable refinement is able to withstand perturbations.

Size, restrictiveness, and search behaviour for a satisfiable tractable refinement

It is also of interest to investigate the size of the attained tractable refinements and the
restrictiveness of the chosen relations as this could give us insights into the behaviour
of the different heuristics. The size of a tractable refinement N ′ = (V ,C ′) is simply
the count of all of its base relations:

|N ′| =
∑

u,v∈V∧u<v

|C ′(u, v)|

The differences in the size of the tractable refinements between the different heuris-
tics for the sameoriginalQCN can be explained by two factors that dependon the choice
of sub-relations: (i) the size of the chosen sub-relations, and (i i) how restrictive the
chosen sub-relations are.

To measure whether a heuristic favors smaller or bigger sub-relations, the average
size of sub-relations that it chose will be measured and compared to the average
size of sub-relations that it could have chosen. Further, a heuristic that chooses more
restrictive sub-relations ismore aggressive in its search. By narrowing down the search
space faster, it tends to move towards a solution faster too. Amore aggressive heuristic
should naturally generate smaller tractable refinements.

Definition 8 Given a QCN N = (V ,C), a graph G = (V , E), and a sub-relation r ∈
C(v, v′) with v, v′ ∈ V , the restrictiveness of r is |N |− |�G(N[v,v′]/r )|− |C(v, v′)\r |.
The restrictiveness of a sub-relation captures how many base relations are removed
from the other relations after theQCN is refined (by means of �

G -consistency) with that
sub-relation.

It is also of interest to find out how close the heuristics described in Sect. 3.2 are to
themost and least restrictive choice. To that end we introduce two additional heuristics
that are based on the number of G-scenarios:
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• dynamic_LCV: choose the sub-relation which retains the most G-scenarios. So this
heuristic always chooses the least constraining value.

• dynamic_MCV: choose the sub-relation which removes the most G-scenarios. So
this heuristic always chooses the most constraining value.

One would expect that dynamic_LCV attains a refinement that is close to optimal in
terms of robustness, while dynamic_MCV results in very fragile refinements.

To further investigate the behaviour of the heuristics we can track the following
measures for every refinement step of the search process: We calculate the number of
solutions by generating all tractable refinements that are still attainable. This represents
the space of valid solutions. We count the number of combinations of sub-relations in
the constraint graph,which represents the entire search space. For aQCNN ′ = (V ,C ′)
with constraint graph E it is calculated as follows:

# possible combinations =
∏

u,v∈V∧u<v∧{u,v}∈E
|spli t(C ′(u, v))|

Finally, we calculate the fraction of the search space which is valid. This is the
fraction of all possible combinations which are actually valid tractable refinements:

% valid = # contained G-scenarios

# possible combinations

3.4 Evaluation

This section describes four experiments that investigate the robustness of satisfiable
tractable refinements, involving Algorithm 1 and each proposed heuristic f described
in Sect. 3.2. The first two experiments compare the proposed heuristics on datasets of
Interval Algebra based on the measures presented in Sect. 3.3. The third experiment
investigates the search behaviour of the proposed heuristics forQCNs of Interval Alge-
bra. The fourth experiment evaluates the heuristics w.r.t. the robustness of tractable
refinements for QCNs of RCC8. As per Note 1, the maximum cardinality search algo-
rithm (Tarjan and Yannakakis 1984) was used to triangulate the constraint graphs of
the involved QCNs.
Technical Specifications Experiments were carried out on a computer with a Ryzen 7
4700U CPU, 16 GB of RAM, and theWindows 10 v2004 OS. Algorithms were coded
in Python and run using the PyPy intepreter v7.3.3.

Experiment 1: based on amount of G-scenarios

Primarily, this experiment was conducted to assess differences in the amount of
G-scenarios contained in the tractable refinements generated by each heuristic. Addi-
tionally, the size of the tractable refinement (i.e., its total number of base relations),
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(a) Average number of G-scenarios contained in the

resulting satisfiable tractable refinements for each

heuristic (left axis), and the average size of these re-

finements (= number of base relations), with the upper

and lower quartile and the median (right axis).

(b) Fitness score for each heuristic with regard to the

amount of G-scenarios in their resulting tractable re-

finements; ranking points are given based on how they

place for each instance, from 2 (first place) to −2

points with a step of −1.

Fig. 5 Illustrative results from the experiment based on amount of G-scenarios

the average size of the sub-relations chosen by a heuristic, and the average size of the
possible sub-relations to be chosen were measured.
Question/answerHow robust are the tractable refinements generated by each heuristic
as measured by the amount of G-scenarios that they contain, and what role does the
size of a refinement play for that matter? Dynamic_sum and dynamic_max generate
solutions that have significantly more G-scenarios than dynamic_min. This can be
explained by observing thatmore robustmeasures are obtained via the choice of bigger
sub-relations, which consequently produce bigger tractable refinements containing
more G-scenarios.
Dataset A dataset of 800 satisfiable random instances of Interval Algebra was gen-
erated using the model S(n = 10, d, l = 6.5) (Nebel 1997; van Beek and Manchak
1996); specifically, 200 QCNs of n = 10 variables and l = 6.5 base relations per
relation on average for each constraint graph degree value d ∈ {2, 4, 6, 8}.
Results The main result is that there are stark differences between heuristics in the
number of G-scenarios contained in the tractable refinements produced. Figure 5a and
Table 1 show that tractable refinements generated by dynamic_sum on average contain
71%more G-scenarios than those of any other heuristic. Further, dynamic_avg scored
7 times higher than dynamic_min, but 14 times lower than static, which in turn was
close todynamic_max. Thefitness scores presented inFig. 5b reveal thatdynamic_sum
and static perform better for smaller degrees, whilst dynamic_max and dynamic_avg
generate comparatively more scenarios for bigger degrees.

The results are presented in further detail and from a different perspective in Table 2.
The bigger (in terms of number of base relations) tractable refinements are generated
by dynamic_max, which is interesting, since it chooses smaller sub-relations than
static and dynamic_sum, both in total and relative to the available options. Further,
dynamic_min is the only heuristic that chooses smaller than average sub-relations,
resulting in the smallest tractable refinements overall. The Spearman’s rank correla-
tion between the amount of contained G-scenarios and the size of a tractable refinement
is corr(# G-scenarios, size) = 0.773. Notably, the average size of possible
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Table 1 The amount of G-scenarios that can be generated from a tractable refinement and the size of a

tractable refinement of a certain degree; avg. # G−scenarios|median # G−scenarios
avg. size|median size

Degree Static Max Min Avg Sum

2
1.8m|606 k
987.88|992

33k|6560
980.62|981

1 k|16
925.25|932

12 k|2616
970.45|974

1.8m|533 k
993.03|1 k

4
6.3m|523 k
577.71|574

5.7m|504 k
685.13|693

86 k|260
464.53|458

295 k|17 k
583.15|582

14.3m|1.9m
625.49|632

6
764 k|49 k
322.51|312

4.2m|517 k
411.51|416

4.75 k|384
269.67|267

238 k|13 k
338.02|333

2.0m|268 k
355.2|256

8
324k|4.5k
193.22|186

1.6m|171 k
245.73|242

3.85 k|380
164.55|162

132 k|15 k
208.86|203

968 k|38 k
216.3|214

Overall
2.3m|141 k
520.33|443

2.8m|133 k
580.75|547

24 k|270
456|348

169 k|8.22 k
525.12|448

4.8m|367 k
549|468

Best performance numbers are given in bold

Table 2 The average size (= number of base relations) of an attained tractable refinement, the average size
of the sub-relations that a heuristic chooses, and the average size of sub-relations from which a heuristic
chooses

Static Max Min Avg Sum

Avg. size of refinement 520.33 580.75 456 525.12 549

Avg. size of chosen sub-rels 3.66 3.06 1.61 2.45 3.71

Avg. size of possible sub-rels 2.15 2.29 2.07 2.22 2.19

Best performance numbers are given in bold

sub-relations also differed significantly between heuristics, with dynamic_max choos-
ing from bigger and dynamic_min from smaller ones, indicating that these heuristics
are less and more aggressive respectively.

Experiment 2: based on average withstood perturbations

This experiment was conducted to calculate how many perturbations the tractable
refinements generated by the heuristics can withstand on average. To this end, in
relation to those refinements, the average amount of perturbations the refinement is
unaffected by and survives are measured. In addition, the number of nodes that were
visited while searching for a tractable refinement, the size of the tractable refinement,
the average size of chosen and possible sub-relations, and the restrictiveness of the
chosen sub-relation are recorded.
Question/answerHow robust are the tractable refinements generated by each heuris-
tic against perturbations as measured by the amount of withstood perturbations in a
sequence, and how are efficiency and robustness related? Again, dynamic_sum and
dynamic_max are able to withstand the most perturbations, while dynamic_min is
the least robust. Heuristics that produce more robust tractable refinements need more
steps to solve a problem (because they prune relations parsimoniously).
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(a) Average, upper, and lower quartile, and the me-

dian of the number of perturbations that the resulting

tractable refinements for each heuristic survives, with-

stands and is not affected by.

(b) Average restrictiveness of the chosen sub-relation

at each refinement step out of 1000 refinement searches

for each heuristic. The width of the graphs represents

the amount of ongoing searches at that step and the

graphs end when > 90% of searches have found a so-

lution.

Fig. 6 Illustrative results from the experiment based on average withstood perturbations

Dataset A dataset of 1 000 satisfiable random instances of Interval Algebra was gen-
erated using the model S(n = 30, d, l = 6.5) (Nebel 1997; van Beek and Manchak
1996); specifically, 200 QCNs of n = 30 variables and l = 6.5 base relations per
relation on average for each constraint graph degree value d ∈ {5, 10, 15, 20, 25}
Results The experiment showed clear differences in how many perturbations the
tractable refinements of the heuristics can survive and, consequently, withstand, while
the likelihood of remaining unaffected was relatively even among heuristics; see
Fig. 6a. Just as in the first experiment, dynamic_sum performed best, on average
withstanding 8%more perturbations than static and dynamic_max, which were about
even. However, dynamic_max generates more robust refinements for degrees d ≥ 10,
while dynamic_sum only performs best for d = 5. While tractable refinements gen-
erated by dynamic_min survived and withstood the fewest perturbations, they had
the highest chance to remain unaffected from a perturbation. This can be explained
from the fact that those refinements remained unaffected by many more perturbations
than what they survived, indicating that they were unlikely to be affected, but had a
low chance of surviving when they were affected. Similarly, dynamic_avg generated
tractable refinements that survived only 1.03 more perturbations than dynamic_min,
and that were relatively unlikely to be affected. More perturbations were withstood by
the refinement not being affected than by it surviving the perturbation. However, there
was a larger difference between heuristics for the number of survived perturbations
than for the number of unaffected perturbations.

Much like in the case of the first experiment, see Fig. 5b, the comparative per-
formance by static and dynamic_sum decreases as degrees get higher, and increases
for dynamic_max and dynamic_avg; the figure here would be qualitatively similar.
Most importantly, the average Pearson correlation between the number of withstood
perturbations and the number of visited nodes is corr(avg. # withstood, #
visited nodes) = 0.82. Detailed results for this experiment are displayed in
Table 3. The average size measurements of the tractable refinements, the chosen sub-
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relations, and the possible sub-relations are qualitatively very similar to those displayed
in Table 2, thus a further display and discussion is omitted. The average restrictiveness
of chosen sub-relations was highest for static (50.64) and dynamic_min (49.26), lower
for dynamic_sum (39.06) and dynamic_avg (32.81), and lowest for dynamic_max
(21.17). Notably, we have that corr(avg. restrictiveness of chosen
sub-relation, # visited nodes) = 0.92, indicating that more aggressive
heuristics solveQCNsmore efficiently. Figure6b shows how the restrictiveness of cho-
sen sub-relations develops as search progresses. It reveals static to be quite irregular
(too aggressive at the beginning and at the end); this is because it is not guided by
local models and hence cannot adapt to the particulars of a QCN. On the other hand,
dynamic_min, even though being almost as aggressive as static, can adapt to a QCN
and is thus steady. Dynamic_max is clearly the least aggressive, and dynamic_sum
and dynamic_avg are similar in terms of aggressiveness.

Experiment 3: RCC8

This experiment investigates the robustness of tractable refinements generated by the
proposed heuristics for QCNs of the Region Connection Calculus by measuring the
average amount of perturbations a tractable refinement can withstand. Additionally,
the restrictiveness and size of the chosen sub-relations and the number of visited nodes
was recorded.
Question/answerDo the results for Allen’s Interval Algebra generalize to the Region
Connection Calculus, so that our framework can claim to be generic? Yes, the results
for the Region Connection Calculus are very similar (qualitatively) to those for Allen’s
Interval Algebra.
Dataset A dataset of 1000 satisfiable random instances of RCC8 was generated using
the model S(n = 30, d, l = 4) (Nebel 1997; van Beek and Manchak 1996); specifi-
cally, 200 QCNs of n = 30 variables and l = 4 base relations per relation on average
for each constraint graph degree value d ∈ {5, 10, 15, 20, 25}.
ResultsOverall the evaluation of heuristics for RCC8 gave similar results as the one for
IA. Again dynamic_min and dynamic_avg were most efficient and more aggressive,
while dynamic_max, dynamic_sum and static were more robust and less aggressive.

Figure 7a shows that static, dynamic_max and dynamic_sum need to visit roughly
120 nodes on average to get a tractable refinement which can then withstand roughly
35 perturbations. On the other hand it only takes dynamic_min 48 nodes on average to
attain a tractable refinementwhich can thenwithstand only 6.2 perturbations. Similarly
dynamic_avg is relatively quick (76 visited nodes on average), but produces very
fragile tractable refinements (10.7 withstood perturbations on average).

Interestingly, Fig. 7c, d are nearly mirrors of each other. The figures show that
dynamic_min is the fastest heuristic for any degree. On the other hand, the most
robust tractable refinements were generated by dynamic_sum. In contrast to Fig. 5b
for IA, dynamic_max did not produce more robust refinements than dynamic_sum for
higher degrees.

Similarly to the experiments on IA, dynamic_min and dynamic_avg choose much
smaller sub-relations that are also more restrictive and thus attain smaller tractable
refinements (see Table 4; Fig. 7b).
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(a) Avg. number of withstood perturbations and avg.

number of visited nodes with the upper and lower

quartile and median.

(b) Average restrictiveness of the chosen sub-relation

at each refinement step out of 900 refinement searches

for each heuristic. The width of the graphs represents

the amount of ongoing searches at that step and the

graphs end when > 95% of searches have found a so-

lution.

(c) Fitness score for each heuristic with regard to the

amount of visited nodes in their resulting tractable

refinements; ranking points are given based on how

they place for each instance, from 2 (first place) to −2

points with a step of −1.

(d) Fitness score for each heuristic with regard to the

amount of withstood perturbations in their resulting

tractable refinements; ranking points are given based

on how they place for each instance, from 2 (first

place) to −2 points with a step of −1.

Fig. 7 Illustrative results from the experiment on instances of RCC8

Table 4 The average size (= number of base relations) of an attained tractable refinement, the average size
of the sub-relations that a heuristic chooses,the average number of nodes visited during a search and the
number of perturbations the tractable refinements can withstand on average

Static Max Min Avg Sum

Avg. size of refinement 4217 4305 2477 3210 4264

Avg. size of chosen sub-rels 3.14 3.15 1.74 2.45 3.15

Avg. # visited nodes 118.5 127.5 48.1 76.5 123.5

Avg. # withstood perturbations 34.54 34.3 6.22 10.69 35.67
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Experiment 4: least- andmost-restrictive-value

This experiment was devised to compare the proposed heuristics (those presented
in Sect. 3.2) to the to the least and most constraining heuristic dynamic_LCV and
dynamic_MCV (see Sect. 3.3) and to investigate the reductions in the search space
and the amount of solutions during search. The proposed heuristics were compared to
dynamic_LCV, by comparing the ordering in which they prioritize the tractable sub-
relations to each other. For each decision the spearman rank correlation of the value
orderings and whether they placed the same value first were recorded. The number of
solutions and the number of possible combinations are measured at every refinement
step. Additionally, the number of visited nodes, the number of backtrackings that
occured during the search and the average number of withstood perturbations were
recorded (Table 5).
Question/answerHow similar are the choices of the heuristics to choosing the true
least- and most-restrictive sub-relation? How quickly do different heuristics reduce
the search space of possible solutions? Dynamic_sum chooses most similar to
dynamic_LCV. More aggressive heuristics like dynamic_min reduce the search space
faster, making them more efficient in general at finding tractable refinements.
Dataset A dataset of 900 satisfiable random instances of Interval Algebra was gen-
erated using the model S(n = 7, d, l = 6.5) (Nebel 1997; van Beek and Manchak
1996); specifically, 300 QCNs of n = 7 variables and l = 6.5 base relations per
relation on average for each constraint graph degree value d ∈ {2, 4, 6}. The need
for choosing such small QCNs arises, because the number of contained G-scenarios
is being calculated at every step for the heuristics dynamic_LCV and dynamic_MCV,
which drastically slows down the search.
Results This experiment grants two main results. First, of the proposed heuristics,
dynamic_sum is the best approximation of dynamic_LCV. Second, more aggressive
heuristics reduce the number of solutions and the search space more heavily, resulting
in more efficient solving, but less robust solutions.

As one would expect, dynamic_MCV and dynamic_LCV behave opposite to each
other and more extreme than the proposed heuristics in every measure.

Of the proposed heuristics, the value orderings of dynamic_sum correlate the
strongest with those of dynamic_LCV (0.641). Also they prioritize the same value in
83.67% of cases. Static and dynamic_max were also similar to dynamic_LCV, show-
casing a correlation of 0.504 and 0.459, and choosing the same value in 77.72% and
69.09% of cases respectively, while dynamic_avg only correlated weakly (0.301) and
dynamic_min did not correlate at all (0.029). The value orderings of dynamic_MCV
and dynamic_LCV do not have a perfectly negative spearman rank correlation, because
sub-relations with the same amount of G-scenarios are ordered the same for both
heuristics.

Figure 8a shows that more aggressive heuristics like dynamic_MCV and
dynamic_min reduce the amount of tractable solutions much faster than less aggres-
sive ones like dynamic_LCV or dynamic_max. A Figure that shows the amount of
possible combinations at each step is qualitatively very similar to Fig. 8a and is thus
omitted. It would show that aggressive heuristics reduce the search space much faster
than less aggressive heuristics. From Fig. 8c one can derive that dynamic_min and
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(a) The average number of tractable solutions that are

still possible at each refinement step for each heuristic.

The graph ends when > 95% the 900 of searches have

found a solution.

(b) Average restrictiveness of the chosen sub-relation

at each refinement step out of 900 refinement searches

for each heuristic. The width of the graphs represents

the amount of ongoing searches at that step and the

graphs end when > 95% of searches have found a so-

lution.

(c) The average percentage of possible combinations

which are consistent tractable refinements at each re-

finements step for each heuristics for QCNs of degree 6.

Fig. 8 Illustrative results from the experiment including the least- and most-restrictive-value heuristic

dynamic_MCV were able to move more quickly to a state in the search where a large
percentage of possible combinations were valid ones. The reader should consider that,
to make the figure more understandable, only QCNs of degree d = 6 are shown in the
graph. However, the graph is qualitatively similar for instances of different degrees.

Discussion of results

Despite using different measures of robustness and experimenting with datasets of
different numbers of variables, the first and second experiment lead to very simi-
lar conclusions regarding the robustness of tractable refinements for QCNs of IA in
relation to the different heuristics used. While dynamic_sum seems to be the most
robust heuristic overall, it is outperformed by dynamic_max on instances with high
degrees. Static proves to be fairly robust, but becomes comparatively less robust for
higher degrees. Dynamic_avg produces relatively fragile tractable refinements, while
dynamic_min is the worst heuristic in terms of robustness.
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The first experiment shows that heuristics have preferences in the size of
sub-relations during the refinement process. In particular, dynamic_min favors sub-
relations with fewer base relations, as this reduces the likelihood of having a base
relation with a lowmodel count (as a reminder, this heuristic prefers sub-relations with
the highest lowest model count among sub-relations, see Sect. 3.2). On the other hand,
dynamic_max chooses sub-relations with more base relations for the exact opposite
reason. Further, static and dynamic_sum prefer bigger sub-relations, as this increases
the sum of weights and number of local models respectively. The experiment also
showed that dynamic_max generated much bigger tractable refinements, while those
generated by dynamic_min were much smaller.

In the second experiment we can see that the sub-relations chosen by the heuristics
also differ with regards to how restrictive they are. Dynamic_min and dynamic_avg
tended to choose more restrictive sub-relations. This is because they chose smaller
sub-relations, which leaves less options for base relations in other relations to form
consistent scenarios with. Surprisingly, the sub-relations chosen by static were also
very restrictive, despite having many base relations, which indicates that static is
unable to adapt well to a given situation. This might be because it does not consider
local models in its decision.

The third experiment shows that heuristics behaved similarlywhen solvingQCNs of
RCC8 as they do for IA. It supports the observation that dynamic_max, dynamic_sum
and static generate more robust tractable refinements, while dynamic_min and
dynamic_avg are more efficient.

The fourth experiment shows thatmore restrictive heuristics reduce the search space
more quickly at the cost of removing more possible solutions. This allows them to
move faster to a point in the search where the search space consists in large parts
out of valid tractable refinements and thus find a solution more efficiently. This is in
part caused by the fact that more restrictive sub-relations reduce the size of “yet to
be refined sub-relations” more heavily. When these tractable are finally selected to be
refined, they might have already been reduced to tractable sub-relations and will thus
not have to be split, resulting in a more shallow search tree. Overall we can gather that
dynamic_avg and especially dynamic_min display a more aggressive search strategy
than dynamic_max, dynamic_sum and static.
A trade-off exists The most important finding is that the heuristics that generate more
robust tractable refinements, viz., dynamic_sum, dynamic_max, and static, are the
least efficient ones Sioutis and Wolter (2020), while dynamic_min and dynamic_avg,
which are themost and secondmost efficient ones, are the least and second least robust
ones, according to our experimentation here. Remarkably, this holds for datasets of
different sizes and constraint languages. This indicates a trade-off when choosing
which heuristic to employ for solving a QCN of Interval Algebra, between finding a
solution fast and generating a robust solution. This fact is further supported by the
strong positive correlation between the amount of withstood perturbations and visited
nodes.

We think that the reason for this lies in the aggressiveness of the heuristics. As can
be seen from fourth experiment, heuristics that choose smaller and more restrictive
sub-relations move towards a solution more quickly, without causing too much back-
tracking and are thus more efficient. On the other hand choosing smaller sub-relations

123



On robust vs fast solving of qualitative constraints 483

and removingmore base relations elsewhere during the search leads to tractable refine-
ments with fewer base relations. As we found out in the first experiment, these smaller
tractable refinements are less robust.

4 Related work

As noted in Sect. 3, the study on robust vs fast solving of QCNs presented here builds
upon the work of Sioutis andWolter (2020), which introduces and evaluates numerous
heuristics for efficiently tackling QCNs, in that it introduces and uses measures to
compare these heuristics in terms of the quality of their output too, i.e., the robustness
and other related measures of the results that they help to produce. The work of Sioutis
and Wolter (2020) itself was inspired by that of Pesant et al. (2012) in traditional
constraint programming, which formalizes a counting-based framework for (finite-
domain) CSPs that is adaptive and seeks to make branching decisions that preserve
most of the solutions by determining what proportion of local solutions agree with
that decision. However, much like Sioutis and Wolter (2020), the work of Pesant et al.
(2012) also does not take into account the quality of the different outputs achieved
with respect to robustness; it is important to note that the term “robust search” used in
Pesant et al. (2012) refers to “search that works well most of the time”, across different
bechmarks (i.e., reliable or dependable search), and does not relate to our notion of
robustness here (see Sect. 3.3).

Even though to the best of our knowledge there has not been any published work
on how fast solving compares to robust solving in a given paradigm, be it qualitative
constraint-based reasoning, traditional constraint programming, or Boolean satisfia-
bility (SAT) for example, notions of robustness (and stability) alone that are similar
to those introduced here (see Sect. 3.3) have been studied quite extensively in the
field of traditional constraint programming (Climent 2015; Climent et al. 2014, 2010;
Barber and Salido 2015; Hebrard 2007) and SAT theories (Ginsberg et al. 1998; Roy
2006; Bofill et al. 2010) over the past years. We note that in the aforementioned works
notions related to robustness, such as stability, are studied as well, but these go beyond
the scope of this paper. Briefly put, a solution is stable, if in the event of a change
that invalidates it, it can be repaired with a minimum number of revisions, whereas a
robust solution is more likely to remain valid after the change occurs; the distinction
is subtle, but clear.

Finally, limited parts of this work were accepted for publication in the proceed-
ings of the 33rd IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2021) (Wehner et al. 2021), and what is presented here is a significant exten-
sion of that published short manuscript. Specifically, Experiments 3 and 4 in Sect. 3.4
are completely novel here, as are a more comprehensive discussion of the results in
that section, a more thorough and self-contained presentation of the theoretical back-
ground of the approach in earlier sections, and the Related Work section, viz., Sect. 4,
presented here, which establishes connections with works in traditional constraint pro-
gramming and SAT and broadens the scope of the paper. We should also note that,
with the help of our reviewers, we rectified the measure of average withstood pertur-
bations for a satisfiable tractable refinement (see the discussion in Sect. 3.3) and the
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subsequent experimental results pertaining to that measure that originally appeared in
Wehner et al. (2021). In that sense, this manuscript is also a more robust version of
the aforementioned preceding conference paper on robustness.

5 Conclusion and future work

The state-of-the-art approach for tackling a given QCN, consists in employing a back-
tracking algorithm for obtaining a tractable refinement of it, where the branching
decisions during search are governed by certain heuristics proposed in the literature.
In this paper, we studied whether a trade-off exists between tackling a QCN fast, and
tackling it in a manner that allows us to obtain a robust tractable refinement of it, i.e., a
refinement that primarily retains as many qualitative solutions as possible. To this end,
we introduced some measures of quality for the various tractable refinements that can
be produced by the different branching heuristics, viz., their robustness in terms of the
qualitative solutions that they contain and their ability to withstand perturbations, and
performed an evaluation in relation to these measures. To the best of our knowledge,
this is the first work to address this issue in the context of qualitative constraint-based
reasoning. Our findings suggest that such a trade-off of speed and robustness indeed
exists, at least with respect to the heuristics that have been implemented and are known
to date.We think that the reason for this lies in the aggressiveness of the search strategy
of the heuristics and that a compromise can be achieved depending on the applica-
tion of interest (e.g., speed over quality, or vice versa). For future work, we would
like to utilize our findings and observations here to investigate and devise adaptive
techniques that switch among different heuristics when tackling a given QCN (e.g.,
reducing aggressiveness while nearing a tractable refinement, and so on). It would
also be an interesting future direction to explore different probability distributions
with regard to perturbations and/or even consider cases where certain constraints can
simply not be perturbed (due to encoding the spatial structure of a fixed environment
for example).
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